MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanbndlem Structured version   Unicode version

Theorem atanbndlem 23372
Description: Lemma for atanbnd 23373. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atanbndlem  |-  ( A  e.  RR+  ->  (arctan `  A )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )

Proof of Theorem atanbndlem
StepHypRef Expression
1 rpre 11145 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR )
2 atanrecl 23358 . . 3  |-  ( A  e.  RR  ->  (arctan `  A )  e.  RR )
31, 2syl 16 . 2  |-  ( A  e.  RR+  ->  (arctan `  A )  e.  RR )
4 picn 22937 . . . 4  |-  pi  e.  CC
5 2cn 10523 . . . 4  |-  2  e.  CC
6 2ne0 10545 . . . 4  |-  2  =/=  0
7 divneg 10156 . . . 4  |-  ( ( pi  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
pi  /  2 )  =  ( -u pi  /  2 ) )
84, 5, 6, 7mp3an 1322 . . 3  |-  -u (
pi  /  2 )  =  ( -u pi  /  2 )
9 ax-1cn 9461 . . . . . . . . . . . 12  |-  1  e.  CC
10 ax-icn 9462 . . . . . . . . . . . . 13  |-  _i  e.  CC
111recnd 9533 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  A  e.  CC )
12 mulcl 9487 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
1310, 11, 12sylancr 661 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( _i  x.  A )  e.  CC )
14 addcl 9485 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
159, 13, 14sylancr 661 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( 1  +  ( _i  x.  A ) )  e.  CC )
16 atanre 23332 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  A  e.  dom arctan )
171, 16syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  A  e. 
dom arctan )
18 atandm2 23324 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
1917, 18sylib 196 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  (
1  -  ( _i  x.  A ) )  =/=  0  /\  (
1  +  ( _i  x.  A ) )  =/=  0 ) )
2019simp3d 1008 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( 1  +  ( _i  x.  A ) )  =/=  0 )
2115, 20logcld 23043 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )
22 subcl 9732 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
239, 13, 22sylancr 661 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( 1  -  ( _i  x.  A ) )  e.  CC )
2419simp2d 1007 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( 1  -  ( _i  x.  A ) )  =/=  0 )
2523, 24logcld 23043 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  CC )
2621, 25subcld 9844 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  CC )
27 imre 12943 . . . . . . . . 9  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  CC  ->  ( Im `  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( Re `  ( -u _i  x.  (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) ) )
2826, 27syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( Im
`  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  =  ( Re
`  ( -u _i  x.  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) ) )
29 atanval 23331 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
3017, 29syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
3130oveq2d 6212 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  =  ( 2  x.  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) ) )
3210, 5, 6divcan2i 10204 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( _i  / 
2 ) )  =  _i
3332oveq1i 6206 . . . . . . . . . . . . 13  |-  ( ( 2  x.  ( _i 
/  2 ) )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )  =  ( _i  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
34 2re 10522 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
3534a1i 11 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  2  e.  RR )
3635recnd 9533 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  2  e.  CC )
37 halfcl 10681 . . . . . . . . . . . . . . 15  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
3810, 37mp1i 12 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( _i 
/  2 )  e.  CC )
3925, 21subcld 9844 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  CC )
4036, 38, 39mulassd 9530 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( 2  x.  ( _i 
/  2 ) )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )  =  ( 2  x.  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
4133, 40syl5eqr 2437 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( _i  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )  =  ( 2  x.  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
4231, 41eqtr4d 2426 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  =  ( _i  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
4321, 25negsubdi2d 9860 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  -u (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) )  =  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
4443oveq2d 6212 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( _i  x.  -u ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  =  ( _i  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) )
4542, 44eqtr4d 2426 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  =  ( _i  x.  -u (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
46 mulneg12 9913 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  CC )  ->  ( -u _i  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  =  ( _i  x.  -u (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
4710, 26, 46sylancr 661 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( -u _i  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  =  ( _i  x.  -u ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) ) )
4845, 47eqtr4d 2426 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  =  (
-u _i  x.  (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
4948fveq2d 5778 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( Re
`  ( 2  x.  (arctan `  A )
) )  =  ( Re `  ( -u _i  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) ) ) )
50 remulcl 9488 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  (arctan `  A )  e.  RR )  ->  (
2  x.  (arctan `  A ) )  e.  RR )
5134, 3, 50sylancr 661 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  e.  RR )
5251rered 13059 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( Re
`  ( 2  x.  (arctan `  A )
) )  =  ( 2  x.  (arctan `  A ) ) )
5328, 49, 523eqtr2rd 2430 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  =  ( Im `  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
54 rpgt0 11150 . . . . . . . . 9  |-  ( A  e.  RR+  ->  0  < 
A )
551rered 13059 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( Re
`  A )  =  A )
5654, 55breqtrrd 4393 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  < 
( Re `  A
) )
57 atanlogsublem 23362 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  (
-u pi (,) pi ) )
5817, 56, 57syl2anc 659 . . . . . . 7  |-  ( A  e.  RR+  ->  ( Im
`  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  e.  ( -u pi (,) pi ) )
5953, 58eqeltrd 2470 . . . . . 6  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  e.  (
-u pi (,) pi ) )
60 eliooord 11505 . . . . . 6  |-  ( ( 2  x.  (arctan `  A ) )  e.  ( -u pi (,) pi )  ->  ( -u pi  <  ( 2  x.  (arctan `  A )
)  /\  ( 2  x.  (arctan `  A
) )  <  pi ) )
6159, 60syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( -u pi  <  ( 2  x.  (arctan `  A )
)  /\  ( 2  x.  (arctan `  A
) )  <  pi ) )
6261simpld 457 . . . 4  |-  ( A  e.  RR+  ->  -u pi  <  ( 2  x.  (arctan `  A ) ) )
63 pire 22936 . . . . . . 7  |-  pi  e.  RR
6463renegcli 9793 . . . . . 6  |-  -u pi  e.  RR
6564a1i 11 . . . . 5  |-  ( A  e.  RR+  ->  -u pi  e.  RR )
66 2pos 10544 . . . . . 6  |-  0  <  2
6766a1i 11 . . . . 5  |-  ( A  e.  RR+  ->  0  <  2 )
68 ltdivmul 10334 . . . . 5  |-  ( (
-u pi  e.  RR  /\  (arctan `  A )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( -u pi  /  2 )  <  (arctan `  A )  <->  -u pi  <  ( 2  x.  (arctan `  A ) ) ) )
6965, 3, 35, 67, 68syl112anc 1230 . . . 4  |-  ( A  e.  RR+  ->  ( (
-u pi  /  2
)  <  (arctan `  A
)  <->  -u pi  <  (
2  x.  (arctan `  A ) ) ) )
7062, 69mpbird 232 . . 3  |-  ( A  e.  RR+  ->  ( -u pi  /  2 )  < 
(arctan `  A )
)
718, 70syl5eqbr 4400 . 2  |-  ( A  e.  RR+  ->  -u (
pi  /  2 )  <  (arctan `  A
) )
7261simprd 461 . . 3  |-  ( A  e.  RR+  ->  ( 2  x.  (arctan `  A
) )  <  pi )
7363a1i 11 . . . 4  |-  ( A  e.  RR+  ->  pi  e.  RR )
74 ltmuldiv2 10333 . . . 4  |-  ( ( (arctan `  A )  e.  RR  /\  pi  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( 2  x.  (arctan `  A )
)  <  pi  <->  (arctan `  A
)  <  ( pi  /  2 ) ) )
753, 73, 35, 67, 74syl112anc 1230 . . 3  |-  ( A  e.  RR+  ->  ( ( 2  x.  (arctan `  A ) )  < 
pi 
<->  (arctan `  A )  <  ( pi  /  2
) ) )
7672, 75mpbid 210 . 2  |-  ( A  e.  RR+  ->  (arctan `  A )  <  (
pi  /  2 ) )
77 halfpire 22942 . . . . 5  |-  ( pi 
/  2 )  e.  RR
7877renegcli 9793 . . . 4  |-  -u (
pi  /  2 )  e.  RR
7978rexri 9557 . . 3  |-  -u (
pi  /  2 )  e.  RR*
8077rexri 9557 . . 3  |-  ( pi 
/  2 )  e. 
RR*
81 elioo2 11491 . . 3  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( (arctan `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  <-> 
( (arctan `  A
)  e.  RR  /\  -u ( pi  /  2
)  <  (arctan `  A
)  /\  (arctan `  A
)  <  ( pi  /  2 ) ) ) )
8279, 80, 81mp2an 670 . 2  |-  ( (arctan `  A )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  ( (arctan `  A )  e.  RR  /\  -u ( pi  /  2
)  <  (arctan `  A
)  /\  (arctan `  A
)  <  ( pi  /  2 ) ) )
833, 71, 76, 82syl3anbrc 1178 1  |-  ( A  e.  RR+  ->  (arctan `  A )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   class class class wbr 4367   dom cdm 4913   ` cfv 5496  (class class class)co 6196   CCcc 9401   RRcr 9402   0cc0 9403   1c1 9404   _ici 9405    + caddc 9406    x. cmul 9408   RR*cxr 9538    < clt 9539    - cmin 9718   -ucneg 9719    / cdiv 10123   2c2 10502   RR+crp 11139   (,)cioo 11450   Recre 12932   Imcim 12933   picpi 13804   logclog 23027  arctancatan 23311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ioc 11455  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-mod 11897  df-seq 12011  df-exp 12070  df-fac 12256  df-bc 12283  df-hash 12308  df-shft 12902  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-limsup 13296  df-clim 13313  df-rlim 13314  df-sum 13511  df-ef 13805  df-sin 13807  df-cos 13808  df-tan 13809  df-pi 13810  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-fbas 18529  df-fg 18530  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-lp 19723  df-perf 19724  df-cn 19814  df-cnp 19815  df-haus 19902  df-tx 20148  df-hmeo 20341  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-xms 20908  df-ms 20909  df-tms 20910  df-cncf 21467  df-limc 22355  df-dv 22356  df-log 23029  df-atan 23314
This theorem is referenced by:  atanbnd  23373
  Copyright terms: Public domain W3C validator