MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref2 Structured version   Unicode version

Theorem asymref2 5204
Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
asymref2  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <-> 
( A. x  e. 
U. U. R x R x  /\  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
) )
Distinct variable group:    x, y, R

Proof of Theorem asymref2
StepHypRef Expression
1 asymref 5203 . 2  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
2 albiim 1720 . . 3  |-  ( A. y ( ( x R y  /\  y R x )  <->  x  =  y )  <->  ( A. y ( ( x R y  /\  y R x )  ->  x  =  y )  /\  A. y ( x  =  y  ->  (
x R y  /\  y R x ) ) ) )
32ralbii 2834 . 2  |-  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y )  <->  A. x  e.  U. U. R ( A. y ( ( x R y  /\  y R x )  ->  x  =  y )  /\  A. y ( x  =  y  ->  (
x R y  /\  y R x ) ) ) )
4 r19.26 2933 . . 3  |-  ( A. x  e.  U. U. R
( A. y ( ( x R y  /\  y R x )  ->  x  =  y )  /\  A. y ( x  =  y  ->  ( x R y  /\  y R x ) ) )  <->  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  ->  x  =  y )  /\  A. x  e.  U. U. R A. y ( x  =  y  -> 
( x R y  /\  y R x ) ) ) )
5 ancom 448 . . 3  |-  ( ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  ->  x  =  y )  /\  A. x  e.  U. U. R A. y ( x  =  y  ->  ( x R y  /\  y R x ) ) )  <->  ( A. x  e.  U. U. R A. y ( x  =  y  ->  ( x R y  /\  y R x ) )  /\  A. x  e. 
U. U. R A. y
( ( x R y  /\  y R x )  ->  x  =  y ) ) )
6 equcom 1818 . . . . . . . 8  |-  ( x  =  y  <->  y  =  x )
76imbi1i 323 . . . . . . 7  |-  ( ( x  =  y  -> 
( x R y  /\  y R x ) )  <->  ( y  =  x  ->  ( x R y  /\  y R x ) ) )
87albii 1661 . . . . . 6  |-  ( A. y ( x  =  y  ->  ( x R y  /\  y R x ) )  <->  A. y ( y  =  x  ->  ( x R y  /\  y R x ) ) )
9 nfv 1728 . . . . . . 7  |-  F/ y  x R x
10 breq2 4398 . . . . . . . . 9  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
11 breq1 4397 . . . . . . . . 9  |-  ( y  =  x  ->  (
y R x  <->  x R x ) )
1210, 11anbi12d 709 . . . . . . . 8  |-  ( y  =  x  ->  (
( x R y  /\  y R x )  <->  ( x R x  /\  x R x ) ) )
13 anidm 642 . . . . . . . 8  |-  ( ( x R x  /\  x R x )  <->  x R x )
1412, 13syl6bb 261 . . . . . . 7  |-  ( y  =  x  ->  (
( x R y  /\  y R x )  <->  x R x ) )
159, 14equsal 2062 . . . . . 6  |-  ( A. y ( y  =  x  ->  ( x R y  /\  y R x ) )  <-> 
x R x )
168, 15bitri 249 . . . . 5  |-  ( A. y ( x  =  y  ->  ( x R y  /\  y R x ) )  <-> 
x R x )
1716ralbii 2834 . . . 4  |-  ( A. x  e.  U. U. R A. y ( x  =  y  ->  ( x R y  /\  y R x ) )  <->  A. x  e.  U. U. R x R x )
18 df-ral 2758 . . . . 5  |-  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  ->  x  =  y )  <->  A. x ( x  e. 
U. U. R  ->  A. y
( ( x R y  /\  y R x )  ->  x  =  y ) ) )
19 df-br 4395 . . . . . . . . . . . . 13  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
20 vex 3061 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
21 vex 3061 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
2220, 21opeluu 4659 . . . . . . . . . . . . . 14  |-  ( <.
x ,  y >.  e.  R  ->  ( x  e.  U. U. R  /\  y  e.  U. U. R ) )
2322simpld 457 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  R  ->  x  e. 
U. U. R )
2419, 23sylbi 195 . . . . . . . . . . . 12  |-  ( x R y  ->  x  e.  U. U. R )
2524adantr 463 . . . . . . . . . . 11  |-  ( ( x R y  /\  y R x )  ->  x  e.  U. U. R
)
2625pm2.24d 143 . . . . . . . . . 10  |-  ( ( x R y  /\  y R x )  -> 
( -.  x  e. 
U. U. R  ->  x  =  y ) )
2726com12 29 . . . . . . . . 9  |-  ( -.  x  e.  U. U. R  ->  ( ( x R y  /\  y R x )  ->  x  =  y )
)
2827alrimiv 1740 . . . . . . . 8  |-  ( -.  x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
29 id 22 . . . . . . . 8  |-  ( A. y ( ( x R y  /\  y R x )  ->  x  =  y )  ->  A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
3028, 29ja 161 . . . . . . 7  |-  ( ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)  ->  A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )
31 ax-1 6 . . . . . . 7  |-  ( A. y ( ( x R y  /\  y R x )  ->  x  =  y )  ->  ( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  ->  x  =  y ) ) )
3230, 31impbii 188 . . . . . 6  |-  ( ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)  <->  A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
3332albii 1661 . . . . 5  |-  ( A. x ( x  e. 
U. U. R  ->  A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y ) )
3418, 33bitri 249 . . . 4  |-  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  ->  x  =  y )  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y ) )
3517, 34anbi12i 695 . . 3  |-  ( ( A. x  e.  U. U. R A. y ( x  =  y  -> 
( x R y  /\  y R x ) )  /\  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)  <->  ( A. x  e.  U. U. R x R x  /\  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
) )
364, 5, 353bitri 271 . 2  |-  ( A. x  e.  U. U. R
( A. y ( ( x R y  /\  y R x )  ->  x  =  y )  /\  A. y ( x  =  y  ->  ( x R y  /\  y R x ) ) )  <->  ( A. x  e.  U. U. R x R x  /\  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
) )
371, 3, 363bitri 271 1  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <-> 
( A. x  e. 
U. U. R x R x  /\  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1403    = wceq 1405    e. wcel 1842   A.wral 2753    i^i cin 3412   <.cop 3977   U.cuni 4190   class class class wbr 4394    _I cid 4732   `'ccnv 4821    |` cres 4824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-res 4834
This theorem is referenced by:  pslem  16158  psss  16166
  Copyright terms: Public domain W3C validator