MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref Structured version   Visualization version   Unicode version

Theorem asymref 5215
Description: Two ways of saying a relation is antisymmetric and reflexive.  U. U. R is the field of a relation by relfld 5360. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Distinct variable group:    x, y, R

Proof of Theorem asymref
StepHypRef Expression
1 df-br 4402 . . . . . . . . . . 11  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
2 vex 3047 . . . . . . . . . . . 12  |-  x  e. 
_V
3 vex 3047 . . . . . . . . . . . 12  |-  y  e. 
_V
42, 3opeluu 4670 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  R  ->  ( x  e.  U. U. R  /\  y  e.  U. U. R ) )
51, 4sylbi 199 . . . . . . . . . 10  |-  ( x R y  ->  (
x  e.  U. U. R  /\  y  e.  U. U. R ) )
65simpld 461 . . . . . . . . 9  |-  ( x R y  ->  x  e.  U. U. R )
76adantr 467 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  ->  x  e.  U. U. R
)
87pm4.71ri 638 . . . . . . 7  |-  ( ( x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  ( x R y  /\  y R x ) ) )
98bibi1i 316 . . . . . 6  |-  ( ( ( x R y  /\  y R x )  <->  ( x  e. 
U. U. R  /\  x  =  y ) )  <-> 
( ( x  e. 
U. U. R  /\  (
x R y  /\  y R x ) )  <-> 
( x  e.  U. U. R  /\  x  =  y ) ) )
10 elin 3616 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
112, 3brcnv 5016 . . . . . . . . . 10  |-  ( x `' R y  <->  y R x )
12 df-br 4402 . . . . . . . . . 10  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
1311, 12bitr3i 255 . . . . . . . . 9  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
141, 13anbi12i 702 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
1510, 14bitr4i 256 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
163opelres 5109 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  U. U. R ) )
17 df-br 4402 . . . . . . . . . 10  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
183ideq 4986 . . . . . . . . . 10  |-  ( x  _I  y  <->  x  =  y )
1917, 18bitr3i 255 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
2019anbi2ci 701 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2116, 20bitri 253 . . . . . . 7  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2215, 21bibi12i 317 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( (
x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
23 pm5.32 641 . . . . . 6  |-  ( ( x  e.  U. U. R  ->  ( ( x R y  /\  y R x )  <->  x  =  y ) )  <->  ( (
x  e.  U. U. R  /\  ( x R y  /\  y R x ) )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
249, 22, 233bitr4i 281 . . . . 5  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( x  e.  U. U. R  -> 
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2524albii 1690 . . . 4  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  A. y
( x  e.  U. U. R  ->  ( (
x R y  /\  y R x )  <->  x  =  y ) ) )
26 19.21v 1785 . . . 4  |-  ( A. y ( x  e. 
U. U. R  ->  (
( x R y  /\  y R x )  <->  x  =  y
) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2725, 26bitri 253 . . 3  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2827albii 1690 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
29 relcnv 5206 . . . 4  |-  Rel  `' R
30 relin2 4951 . . . 4  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3129, 30ax-mp 5 . . 3  |-  Rel  ( R  i^i  `' R )
32 relres 5131 . . 3  |-  Rel  (  _I  |`  U. U. R
)
33 eqrel 4923 . . 3  |-  ( ( Rel  ( R  i^i  `' R )  /\  Rel  (  _I  |`  U. U. R ) )  -> 
( ( R  i^i  `' R )  =  (  _I  |`  U. U. R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) ) )
3431, 32, 33mp2an 677 . 2  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) )
35 df-ral 2741 . 2  |-  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
3628, 34, 353bitr4i 281 1  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1441    = wceq 1443    e. wcel 1886   A.wral 2736    i^i cin 3402   <.cop 3973   U.cuni 4197   class class class wbr 4401    _I cid 4743   `'ccnv 4832    |` cres 4835   Rel wrel 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pr 4638
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-res 4845
This theorem is referenced by:  asymref2  5216  letsr  16466
  Copyright terms: Public domain W3C validator