MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaass Structured version   Unicode version

Theorem assaass 17730
Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v  |-  V  =  ( Base `  W
)
isassa.f  |-  F  =  (Scalar `  W )
isassa.b  |-  B  =  ( Base `  F
)
isassa.s  |-  .x.  =  ( .s `  W )
isassa.t  |-  .X.  =  ( .r `  W )
Assertion
Ref Expression
assaass  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A  .x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) ) )

Proof of Theorem assaass
StepHypRef Expression
1 isassa.v . . 3  |-  V  =  ( Base `  W
)
2 isassa.f . . 3  |-  F  =  (Scalar `  W )
3 isassa.b . . 3  |-  B  =  ( Base `  F
)
4 isassa.s . . 3  |-  .x.  =  ( .s `  W )
5 isassa.t . . 3  |-  .X.  =  ( .r `  W )
61, 2, 3, 4, 5assalem 17729 . 2  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( A  .x.  X
)  .X.  Y )  =  ( A  .x.  ( X  .X.  Y ) )  /\  ( X 
.X.  ( A  .x.  Y ) )  =  ( A  .x.  ( X  .X.  Y ) ) ) )
76simpld 459 1  |-  ( ( W  e. AssAlg  /\  ( A  e.  B  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A  .x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   ` cfv 5579  (class class class)co 6275   Basecbs 14479   .rcmulr 14545  Scalarcsca 14547   .scvsca 14548  AssAlgcasa 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-nul 4569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-iota 5542  df-fv 5587  df-ov 6278  df-assa 17725
This theorem is referenced by:  assa2ass  17735  issubassa  17737  asclmul1  17752  asclrhm  17755  assamulgscmlem2  17762  mplmon2mul  17930  matinv  18939
  Copyright terms: Public domain W3C validator