MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Unicode version

Theorem aspval2 17535
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a  |-  A  =  (AlgSpan `  W )
aspval2.c  |-  C  =  (algSc `  W )
aspval2.r  |-  R  =  (mrCls `  (SubRing `  W
) )
aspval2.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
aspval2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )

Proof of Theorem aspval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3642 . . . . . . . . 9  |-  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  <->  ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `
 W ) ) )
21anbi1i 695 . . . . . . . 8  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( ( x  e.  (SubRing `  W
)  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
) )
3 anass 649 . . . . . . . 8  |-  ( ( ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
42, 3bitri 249 . . . . . . 7  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
5 aspval2.c . . . . . . . . . . 11  |-  C  =  (algSc `  W )
6 eqid 2452 . . . . . . . . . . 11  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
75, 6issubassa2 17533 . . . . . . . . . 10  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( x  e.  ( LSubSp `  W )  <->  ran 
C  C_  x )
)
87anbi1d 704 . . . . . . . . 9  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C 
C_  x  /\  S  C_  x ) ) )
9 unss 3633 . . . . . . . . 9  |-  ( ( ran  C  C_  x  /\  S  C_  x )  <-> 
( ran  C  u.  S )  C_  x
)
108, 9syl6bb 261 . . . . . . . 8  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C  u.  S )  C_  x ) )
1110pm5.32da 641 . . . . . . 7  |-  ( W  e. AssAlg  ->  ( ( x  e.  (SubRing `  W
)  /\  ( x  e.  ( LSubSp `  W )  /\  S  C_  x ) )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
124, 11syl5bb 257 . . . . . 6  |-  ( W  e. AssAlg  ->  ( ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
1312abbidv 2588 . . . . 5  |-  ( W  e. AssAlg  ->  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `  W )
)  /\  S  C_  x
) }  =  {
x  |  ( x  e.  (SubRing `  W
)  /\  ( ran  C  u.  S )  C_  x ) } )
1413adantr 465 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  |  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x ) }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S ) 
C_  x ) } )
15 df-rab 2805 . . . 4  |-  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
) }
16 df-rab 2805 . . . 4  |-  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) }
1714, 15, 163eqtr4g 2518 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
1817inteqd 4236 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
19 aspval2.a . . 3  |-  A  =  (AlgSpan `  W )
20 aspval2.v . . 3  |-  V  =  ( Base `  W
)
2119, 20, 6aspval 17517 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }
)
22 assarng 17510 . . . . 5  |-  ( W  e. AssAlg  ->  W  e.  Ring )
2320subrgmre 17007 . . . . 5  |-  ( W  e.  Ring  ->  (SubRing `  W
)  e.  (Moore `  V ) )
2422, 23syl 16 . . . 4  |-  ( W  e. AssAlg  ->  (SubRing `  W )  e.  (Moore `  V )
)
2524adantr 465 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  (SubRing `  W )  e.  (Moore `  V ) )
26 eqid 2452 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
27 assalmod 17509 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  LMod )
28 eqid 2452 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
295, 26, 22, 27, 28, 20asclf 17526 . . . . . 6  |-  ( W  e. AssAlg  ->  C : (
Base `  (Scalar `  W
) ) --> V )
30 frn 5668 . . . . . 6  |-  ( C : ( Base `  (Scalar `  W ) ) --> V  ->  ran  C  C_  V
)
3129, 30syl 16 . . . . 5  |-  ( W  e. AssAlg  ->  ran  C  C_  V
)
3231adantr 465 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ran  C 
C_  V )
33 simpr 461 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  C_  V )
3432, 33unssd 3635 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( ran  C  u.  S ) 
C_  V )
35 aspval2.r . . . 4  |-  R  =  (mrCls `  (SubRing `  W
) )
3635mrcval 14662 . . 3  |-  ( ( (SubRing `  W )  e.  (Moore `  V )  /\  ( ran  C  u.  S )  C_  V
)  ->  ( R `  ( ran  C  u.  S ) )  = 
|^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
3725, 34, 36syl2anc 661 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( R `  ( ran  C  u.  S ) )  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
3818, 21, 373eqtr4d 2503 1  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2437   {crab 2800    u. cun 3429    i^i cin 3430    C_ wss 3431   |^|cint 4231   ran crn 4944   -->wf 5517   ` cfv 5521   Basecbs 14287  Scalarcsca 14355  Moorecmre 14634  mrClscmrc 14635   Ringcrg 16763  SubRingcsubrg 16979   LSubSpclss 17131  AssAlgcasa 17499  AlgSpancasp 17500  algSccascl 17501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-2 10486  df-3 10487  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-ress 14294  df-plusg 14365  df-mulr 14366  df-0g 14494  df-mre 14638  df-mrc 14639  df-mnd 15529  df-grp 15659  df-minusg 15660  df-sbg 15661  df-subg 15792  df-mgp 16709  df-ur 16721  df-rng 16765  df-subrg 16981  df-lmod 17068  df-lss 17132  df-lsp 17171  df-assa 17502  df-asp 17503  df-ascl 17504
This theorem is referenced by:  evlseu  17721
  Copyright terms: Public domain W3C validator