MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Unicode version

Theorem aspval2 18314
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a  |-  A  =  (AlgSpan `  W )
aspval2.c  |-  C  =  (algSc `  W )
aspval2.r  |-  R  =  (mrCls `  (SubRing `  W
) )
aspval2.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
aspval2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )

Proof of Theorem aspval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3625 . . . . . . . . 9  |-  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  <->  ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `
 W ) ) )
21anbi1i 693 . . . . . . . 8  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( ( x  e.  (SubRing `  W
)  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
) )
3 anass 647 . . . . . . . 8  |-  ( ( ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
42, 3bitri 249 . . . . . . 7  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
5 aspval2.c . . . . . . . . . . 11  |-  C  =  (algSc `  W )
6 eqid 2402 . . . . . . . . . . 11  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
75, 6issubassa2 18312 . . . . . . . . . 10  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( x  e.  ( LSubSp `  W )  <->  ran 
C  C_  x )
)
87anbi1d 703 . . . . . . . . 9  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C 
C_  x  /\  S  C_  x ) ) )
9 unss 3616 . . . . . . . . 9  |-  ( ( ran  C  C_  x  /\  S  C_  x )  <-> 
( ran  C  u.  S )  C_  x
)
108, 9syl6bb 261 . . . . . . . 8  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C  u.  S )  C_  x ) )
1110pm5.32da 639 . . . . . . 7  |-  ( W  e. AssAlg  ->  ( ( x  e.  (SubRing `  W
)  /\  ( x  e.  ( LSubSp `  W )  /\  S  C_  x ) )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
124, 11syl5bb 257 . . . . . 6  |-  ( W  e. AssAlg  ->  ( ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
1312abbidv 2538 . . . . 5  |-  ( W  e. AssAlg  ->  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `  W )
)  /\  S  C_  x
) }  =  {
x  |  ( x  e.  (SubRing `  W
)  /\  ( ran  C  u.  S )  C_  x ) } )
1413adantr 463 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  |  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x ) }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S ) 
C_  x ) } )
15 df-rab 2762 . . . 4  |-  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
) }
16 df-rab 2762 . . . 4  |-  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) }
1714, 15, 163eqtr4g 2468 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
1817inteqd 4231 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
19 aspval2.a . . 3  |-  A  =  (AlgSpan `  W )
20 aspval2.v . . 3  |-  V  =  ( Base `  W
)
2119, 20, 6aspval 18295 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }
)
22 assaring 18287 . . . . 5  |-  ( W  e. AssAlg  ->  W  e.  Ring )
2320subrgmre 17771 . . . . 5  |-  ( W  e.  Ring  ->  (SubRing `  W
)  e.  (Moore `  V ) )
2422, 23syl 17 . . . 4  |-  ( W  e. AssAlg  ->  (SubRing `  W )  e.  (Moore `  V )
)
2524adantr 463 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  (SubRing `  W )  e.  (Moore `  V ) )
26 eqid 2402 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
27 assalmod 18286 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  LMod )
28 eqid 2402 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
295, 26, 22, 27, 28, 20asclf 18304 . . . . . 6  |-  ( W  e. AssAlg  ->  C : (
Base `  (Scalar `  W
) ) --> V )
30 frn 5719 . . . . . 6  |-  ( C : ( Base `  (Scalar `  W ) ) --> V  ->  ran  C  C_  V
)
3129, 30syl 17 . . . . 5  |-  ( W  e. AssAlg  ->  ran  C  C_  V
)
3231adantr 463 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ran  C 
C_  V )
33 simpr 459 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  C_  V )
3432, 33unssd 3618 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( ran  C  u.  S ) 
C_  V )
35 aspval2.r . . . 4  |-  R  =  (mrCls `  (SubRing `  W
) )
3635mrcval 15222 . . 3  |-  ( ( (SubRing `  W )  e.  (Moore `  V )  /\  ( ran  C  u.  S )  C_  V
)  ->  ( R `  ( ran  C  u.  S ) )  = 
|^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
3725, 34, 36syl2anc 659 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( R `  ( ran  C  u.  S ) )  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
3818, 21, 373eqtr4d 2453 1  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   {cab 2387   {crab 2757    u. cun 3411    i^i cin 3412    C_ wss 3413   |^|cint 4226   ran crn 4823   -->wf 5564   ` cfv 5568   Basecbs 14839  Scalarcsca 14910  Moorecmre 15194  mrClscmrc 15195   Ringcrg 17516  SubRingcsubrg 17743   LSubSpclss 17896  AssAlgcasa 18276  AlgSpancasp 18277  algSccascl 18278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-3 10635  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-0g 15054  df-mre 15198  df-mrc 15199  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-grp 16379  df-minusg 16380  df-sbg 16381  df-subg 16520  df-mgp 17460  df-ur 17472  df-ring 17518  df-subrg 17745  df-lmod 17832  df-lss 17897  df-lsp 17936  df-assa 18279  df-asp 18280  df-ascl 18281
This theorem is referenced by:  evlseu  18503
  Copyright terms: Public domain W3C validator