MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Unicode version

Theorem aspval2 17395
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a  |-  A  =  (AlgSpan `  W )
aspval2.c  |-  C  =  (algSc `  W )
aspval2.r  |-  R  =  (mrCls `  (SubRing `  W
) )
aspval2.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
aspval2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )

Proof of Theorem aspval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3536 . . . . . . . . 9  |-  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  <->  ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `
 W ) ) )
21anbi1i 690 . . . . . . . 8  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( ( x  e.  (SubRing `  W
)  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
) )
3 anass 644 . . . . . . . 8  |-  ( ( ( x  e.  (SubRing `  W )  /\  x  e.  ( LSubSp `  W )
)  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
42, 3bitri 249 . . . . . . 7  |-  ( ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
)  <->  ( x  e.  (SubRing `  W )  /\  ( x  e.  (
LSubSp `  W )  /\  S  C_  x ) ) )
5 aspval2.c . . . . . . . . . . 11  |-  C  =  (algSc `  W )
6 eqid 2441 . . . . . . . . . . 11  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
75, 6issubassa2 17393 . . . . . . . . . 10  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( x  e.  ( LSubSp `  W )  <->  ran 
C  C_  x )
)
87anbi1d 699 . . . . . . . . 9  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C 
C_  x  /\  S  C_  x ) ) )
9 unss 3527 . . . . . . . . 9  |-  ( ( ran  C  C_  x  /\  S  C_  x )  <-> 
( ran  C  u.  S )  C_  x
)
108, 9syl6bb 261 . . . . . . . 8  |-  ( ( W  e. AssAlg  /\  x  e.  (SubRing `  W )
)  ->  ( (
x  e.  ( LSubSp `  W )  /\  S  C_  x )  <->  ( ran  C  u.  S )  C_  x ) )
1110pm5.32da 636 . . . . . . 7  |-  ( W  e. AssAlg  ->  ( ( x  e.  (SubRing `  W
)  /\  ( x  e.  ( LSubSp `  W )  /\  S  C_  x ) )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
124, 11syl5bb 257 . . . . . 6  |-  ( W  e. AssAlg  ->  ( ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x )  <->  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) ) )
1312abbidv 2555 . . . . 5  |-  ( W  e. AssAlg  ->  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `  W )
)  /\  S  C_  x
) }  =  {
x  |  ( x  e.  (SubRing `  W
)  /\  ( ran  C  u.  S )  C_  x ) } )
1413adantr 462 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  |  ( x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  /\  S  C_  x ) }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S ) 
C_  x ) } )
15 df-rab 2722 . . . 4  |-  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  |  ( x  e.  ( (SubRing `  W )  i^i  ( LSubSp `
 W ) )  /\  S  C_  x
) }
16 df-rab 2722 . . . 4  |-  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x }  =  { x  |  ( x  e.  (SubRing `  W )  /\  ( ran  C  u.  S )  C_  x
) }
1714, 15, 163eqtr4g 2498 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
1817inteqd 4130 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
19 aspval2.a . . 3  |-  A  =  (AlgSpan `  W )
20 aspval2.v . . 3  |-  V  =  ( Base `  W
)
2119, 20, 6aspval 17377 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { x  e.  ( (SubRing `  W
)  i^i  ( LSubSp `  W ) )  |  S  C_  x }
)
22 assarng 17370 . . . . 5  |-  ( W  e. AssAlg  ->  W  e.  Ring )
2320subrgmre 16869 . . . . 5  |-  ( W  e.  Ring  ->  (SubRing `  W
)  e.  (Moore `  V ) )
2422, 23syl 16 . . . 4  |-  ( W  e. AssAlg  ->  (SubRing `  W )  e.  (Moore `  V )
)
2524adantr 462 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  (SubRing `  W )  e.  (Moore `  V ) )
26 eqid 2441 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
27 assalmod 17369 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  LMod )
28 eqid 2441 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
295, 26, 22, 27, 28, 20asclf 17386 . . . . . 6  |-  ( W  e. AssAlg  ->  C : (
Base `  (Scalar `  W
) ) --> V )
30 frn 5562 . . . . . 6  |-  ( C : ( Base `  (Scalar `  W ) ) --> V  ->  ran  C  C_  V
)
3129, 30syl 16 . . . . 5  |-  ( W  e. AssAlg  ->  ran  C  C_  V
)
3231adantr 462 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ran  C 
C_  V )
33 simpr 458 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  C_  V )
3432, 33unssd 3529 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( ran  C  u.  S ) 
C_  V )
35 aspval2.r . . . 4  |-  R  =  (mrCls `  (SubRing `  W
) )
3635mrcval 14544 . . 3  |-  ( ( (SubRing `  W )  e.  (Moore `  V )  /\  ( ran  C  u.  S )  C_  V
)  ->  ( R `  ( ran  C  u.  S ) )  = 
|^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S
)  C_  x }
)
3725, 34, 36syl2anc 656 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( R `  ( ran  C  u.  S ) )  =  |^| { x  e.  (SubRing `  W )  |  ( ran  C  u.  S )  C_  x } )
3818, 21, 373eqtr4d 2483 1  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( R `  ( ran  C  u.  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427   {crab 2717    u. cun 3323    i^i cin 3324    C_ wss 3325   |^|cint 4125   ran crn 4837   -->wf 5411   ` cfv 5415   Basecbs 14170  Scalarcsca 14237  Moorecmre 14516  mrClscmrc 14517   Ringcrg 16635  SubRingcsubrg 16841   LSubSpclss 16991  AssAlgcasa 17359  AlgSpancasp 17360  algSccascl 17361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-0g 14376  df-mre 14520  df-mrc 14521  df-mnd 15411  df-grp 15538  df-minusg 15539  df-sbg 15540  df-subg 15671  df-mgp 16582  df-ur 16594  df-rng 16637  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lsp 17031  df-assa 17362  df-asp 17363  df-ascl 17364
This theorem is referenced by:  evlseu  17578
  Copyright terms: Public domain W3C validator