MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Structured version   Unicode version

Theorem aspval 17377
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a  |-  A  =  (AlgSpan `  W )
aspval.v  |-  V  =  ( Base `  W
)
aspval.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
aspval  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
Distinct variable groups:    t, L    t, S    t, V    t, W
Allowed substitution hint:    A( t)

Proof of Theorem aspval
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5  |-  A  =  (AlgSpan `  W )
2 fveq2 5688 . . . . . . . . 9  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
3 aspval.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
42, 3syl6eqr 2491 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  V )
54pweqd 3862 . . . . . . 7  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
6 fveq2 5688 . . . . . . . . . 10  |-  ( w  =  W  ->  (SubRing `  w )  =  (SubRing `  W ) )
7 fveq2 5688 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 aspval.l . . . . . . . . . . 11  |-  L  =  ( LSubSp `  W )
97, 8syl6eqr 2491 . . . . . . . . . 10  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  L )
106, 9ineq12d 3550 . . . . . . . . 9  |-  ( w  =  W  ->  (
(SubRing `  w )  i^i  ( LSubSp `  w )
)  =  ( (SubRing `  W )  i^i  L
) )
11 rabeq 2964 . . . . . . . . 9  |-  ( ( (SubRing `  w )  i^i  ( LSubSp `  w )
)  =  ( (SubRing `  W )  i^i  L
)  ->  { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }  =  { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )
1210, 11syl 16 . . . . . . . 8  |-  ( w  =  W  ->  { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }  =  { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )
1312inteqd 4130 . . . . . . 7  |-  ( w  =  W  ->  |^| { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } )
145, 13mpteq12dv 4367 . . . . . 6  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  ( (SubRing `  w )  i^i  ( LSubSp `  w )
)  |  s  C_  t } )  =  ( s  e.  ~P V  |-> 
|^| { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } ) )
15 df-asp 17363 . . . . . 6  |- AlgSpan  =  ( w  e. AssAlg  |->  ( s  e.  ~P ( Base `  w )  |->  |^| { t  e.  ( (SubRing `  w
)  i^i  ( LSubSp `  w ) )  |  s  C_  t }
) )
16 fvex 5698 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
173, 16eqeltri 2511 . . . . . . . 8  |-  V  e. 
_V
1817pwex 4472 . . . . . . 7  |-  ~P V  e.  _V
1918mptex 5945 . . . . . 6  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )  e.  _V
2014, 15, 19fvmpt 5771 . . . . 5  |-  ( W  e. AssAlg  ->  (AlgSpan `  W )  =  ( s  e. 
~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) )
211, 20syl5eq 2485 . . . 4  |-  ( W  e. AssAlg  ->  A  =  ( s  e.  ~P V  |-> 
|^| { t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } ) )
2221fveq1d 5690 . . 3  |-  ( W  e. AssAlg  ->  ( A `  S )  =  ( ( s  e.  ~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) `  S ) )
2322adantr 462 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  ( ( s  e.  ~P V  |->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } ) `
 S ) )
24 simpr 458 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  C_  V )
2517elpw2 4453 . . . 4  |-  ( S  e.  ~P V  <->  S  C_  V
)
2624, 25sylibr 212 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  S  e.  ~P V )
27 assarng 17370 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  Ring )
283subrgid 16847 . . . . . . 7  |-  ( W  e.  Ring  ->  V  e.  (SubRing `  W )
)
2927, 28syl 16 . . . . . 6  |-  ( W  e. AssAlg  ->  V  e.  (SubRing `  W ) )
30 assalmod 17369 . . . . . . 7  |-  ( W  e. AssAlg  ->  W  e.  LMod )
313, 8lss1 16998 . . . . . . 7  |-  ( W  e.  LMod  ->  V  e.  L )
3230, 31syl 16 . . . . . 6  |-  ( W  e. AssAlg  ->  V  e.  L
)
3329, 32elind 3537 . . . . 5  |-  ( W  e. AssAlg  ->  V  e.  ( (SubRing `  W )  i^i  L ) )
34 sseq2 3375 . . . . . 6  |-  ( t  =  V  ->  ( S  C_  t  <->  S  C_  V
) )
3534rspcev 3070 . . . . 5  |-  ( ( V  e.  ( (SubRing `  W )  i^i  L
)  /\  S  C_  V
)  ->  E. t  e.  ( (SubRing `  W
)  i^i  L ) S  C_  t )
3633, 35sylan 468 . . . 4  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  E. t  e.  ( (SubRing `  W
)  i^i  L ) S  C_  t )
37 intexrab 4448 . . . 4  |-  ( E. t  e.  ( (SubRing `  W )  i^i  L
) S  C_  t  <->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  S  C_  t }  e.  _V )
3836, 37sylib 196 . . 3  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t }  e.  _V )
39 sseq1 3374 . . . . . 6  |-  ( s  =  S  ->  (
s  C_  t  <->  S  C_  t
) )
4039rabbidv 2962 . . . . 5  |-  ( s  =  S  ->  { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t }  =  { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
4140inteqd 4130 . . . 4  |-  ( s  =  S  ->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t }  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
42 eqid 2441 . . . 4  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  ( (SubRing `  W )  i^i  L )  |  s 
C_  t } )  =  ( s  e. 
~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } )
4341, 42fvmptg 5769 . . 3  |-  ( ( S  e.  ~P V  /\  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t }  e.  _V )  -> 
( ( s  e. 
~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
4426, 38, 43syl2anc 656 . 2  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  (
( s  e.  ~P V  |->  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  s  C_  t } ) `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
4523, 44eqtrd 2473 1  |-  ( ( W  e. AssAlg  /\  S  C_  V )  ->  ( A `  S )  =  |^| { t  e.  ( (SubRing `  W
)  i^i  L )  |  S  C_  t } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   E.wrex 2714   {crab 2717   _Vcvv 2970    i^i cin 3324    C_ wss 3325   ~Pcpw 3857   |^|cint 4125    e. cmpt 4347   ` cfv 5415   Basecbs 14170   Ringcrg 16635  SubRingcsubrg 16841   LModclmod 16928   LSubSpclss 16991  AssAlgcasa 17359  AlgSpancasp 17360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mnd 15411  df-grp 15538  df-mgp 16582  df-ur 16594  df-rng 16637  df-subrg 16843  df-lmod 16930  df-lss 16992  df-assa 17362  df-asp 17363
This theorem is referenced by:  asplss  17378  aspid  17379  aspsubrg  17380  aspss  17381  aspssid  17382  aspval2  17395
  Copyright terms: Public domain W3C validator