MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Structured version   Unicode version

Theorem asclghm 17774
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a  |-  A  =  (algSc `  W )
asclf.f  |-  F  =  (Scalar `  W )
asclf.r  |-  ( ph  ->  W  e.  Ring )
asclf.l  |-  ( ph  ->  W  e.  LMod )
Assertion
Ref Expression
asclghm  |-  ( ph  ->  A  e.  ( F 
GrpHom  W ) )

Proof of Theorem asclghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . 2  |-  ( Base `  F )  =  (
Base `  F )
2 eqid 2467 . 2  |-  ( Base `  W )  =  (
Base `  W )
3 eqid 2467 . 2  |-  ( +g  `  F )  =  ( +g  `  F )
4 eqid 2467 . 2  |-  ( +g  `  W )  =  ( +g  `  W )
5 asclf.l . . . 4  |-  ( ph  ->  W  e.  LMod )
6 asclf.f . . . . 5  |-  F  =  (Scalar `  W )
76lmodrng 17315 . . . 4  |-  ( W  e.  LMod  ->  F  e. 
Ring )
85, 7syl 16 . . 3  |-  ( ph  ->  F  e.  Ring )
9 rnggrp 17000 . . 3  |-  ( F  e.  Ring  ->  F  e. 
Grp )
108, 9syl 16 . 2  |-  ( ph  ->  F  e.  Grp )
11 asclf.r . . 3  |-  ( ph  ->  W  e.  Ring )
12 rnggrp 17000 . . 3  |-  ( W  e.  Ring  ->  W  e. 
Grp )
1311, 12syl 16 . 2  |-  ( ph  ->  W  e.  Grp )
14 asclf.a . . 3  |-  A  =  (algSc `  W )
1514, 6, 11, 5, 1, 2asclf 17773 . 2  |-  ( ph  ->  A : ( Base `  F ) --> ( Base `  W ) )
165adantr 465 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  W  e.  LMod )
17 simprl 755 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  x  e.  ( Base `  F
) )
18 simprr 756 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  y  e.  ( Base `  F
) )
19 eqid 2467 . . . . . . 7  |-  ( 1r
`  W )  =  ( 1r `  W
)
202, 19rngidcl 17015 . . . . . 6  |-  ( W  e.  Ring  ->  ( 1r
`  W )  e.  ( Base `  W
) )
2111, 20syl 16 . . . . 5  |-  ( ph  ->  ( 1r `  W
)  e.  ( Base `  W ) )
2221adantr 465 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( 1r `  W )  e.  ( Base `  W
) )
23 eqid 2467 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
242, 4, 6, 23, 1, 3lmodvsdir 17331 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
)  /\  ( 1r `  W )  e.  (
Base `  W )
) )  ->  (
( x ( +g  `  F ) y ) ( .s `  W
) ( 1r `  W ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
2516, 17, 18, 22, 24syl13anc 1230 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
( x ( +g  `  F ) y ) ( .s `  W
) ( 1r `  W ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
261, 3grpcl 15870 . . . . . 6  |-  ( ( F  e.  Grp  /\  x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
) )  ->  (
x ( +g  `  F
) y )  e.  ( Base `  F
) )
27263expb 1197 . . . . 5  |-  ( ( F  e.  Grp  /\  ( x  e.  ( Base `  F )  /\  y  e.  ( Base `  F ) ) )  ->  ( x ( +g  `  F ) y )  e.  (
Base `  F )
)
2810, 27sylan 471 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
x ( +g  `  F
) y )  e.  ( Base `  F
) )
2914, 6, 1, 23, 19asclval 17771 . . . 4  |-  ( ( x ( +g  `  F
) y )  e.  ( Base `  F
)  ->  ( A `  ( x ( +g  `  F ) y ) )  =  ( ( x ( +g  `  F
) y ) ( .s `  W ) ( 1r `  W
) ) )
3028, 29syl 16 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( A `  ( x
( +g  `  F ) y ) )  =  ( ( x ( +g  `  F ) y ) ( .s
`  W ) ( 1r `  W ) ) )
3114, 6, 1, 23, 19asclval 17771 . . . . 5  |-  ( x  e.  ( Base `  F
)  ->  ( A `  x )  =  ( x ( .s `  W ) ( 1r
`  W ) ) )
3214, 6, 1, 23, 19asclval 17771 . . . . 5  |-  ( y  e.  ( Base `  F
)  ->  ( A `  y )  =  ( y ( .s `  W ) ( 1r
`  W ) ) )
3331, 32oveqan12d 6302 . . . 4  |-  ( ( x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
) )  ->  (
( A `  x
) ( +g  `  W
) ( A `  y ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
3433adantl 466 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
( A `  x
) ( +g  `  W
) ( A `  y ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
3525, 30, 343eqtr4d 2518 . 2  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( A `  ( x
( +g  `  F ) y ) )  =  ( ( A `  x ) ( +g  `  W ) ( A `
 y ) ) )
361, 2, 3, 4, 10, 13, 15, 35isghmd 16078 1  |-  ( ph  ->  A  e.  ( F 
GrpHom  W ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ` cfv 5587  (class class class)co 6283   Basecbs 14489   +g cplusg 14554  Scalarcsca 14557   .scvsca 14558   Grpcgrp 15726    GrpHom cghm 16066   1rcur 16952   Ringcrg 16995   LModclmod 17307  algSccascl 17747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-nn 10536  df-2 10593  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-plusg 14567  df-0g 14696  df-mnd 15731  df-grp 15864  df-ghm 16067  df-mgp 16941  df-ur 16953  df-rng 16997  df-lmod 17309  df-ascl 17750
This theorem is referenced by:  asclinvg  17777  asclrhm  17778  cpmatacl  19000  cpmatinvcl  19001  mat2pmatghm  19014  mat2pmatmul  19015
  Copyright terms: Public domain W3C validator