MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Structured version   Unicode version

Theorem asclghm 17421
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a  |-  A  =  (algSc `  W )
asclf.f  |-  F  =  (Scalar `  W )
asclf.r  |-  ( ph  ->  W  e.  Ring )
asclf.l  |-  ( ph  ->  W  e.  LMod )
Assertion
Ref Expression
asclghm  |-  ( ph  ->  A  e.  ( F 
GrpHom  W ) )

Proof of Theorem asclghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . 2  |-  ( Base `  F )  =  (
Base `  F )
2 eqid 2443 . 2  |-  ( Base `  W )  =  (
Base `  W )
3 eqid 2443 . 2  |-  ( +g  `  F )  =  ( +g  `  F )
4 eqid 2443 . 2  |-  ( +g  `  W )  =  ( +g  `  W )
5 asclf.l . . . 4  |-  ( ph  ->  W  e.  LMod )
6 asclf.f . . . . 5  |-  F  =  (Scalar `  W )
76lmodrng 16968 . . . 4  |-  ( W  e.  LMod  ->  F  e. 
Ring )
85, 7syl 16 . . 3  |-  ( ph  ->  F  e.  Ring )
9 rnggrp 16662 . . 3  |-  ( F  e.  Ring  ->  F  e. 
Grp )
108, 9syl 16 . 2  |-  ( ph  ->  F  e.  Grp )
11 asclf.r . . 3  |-  ( ph  ->  W  e.  Ring )
12 rnggrp 16662 . . 3  |-  ( W  e.  Ring  ->  W  e. 
Grp )
1311, 12syl 16 . 2  |-  ( ph  ->  W  e.  Grp )
14 asclf.a . . 3  |-  A  =  (algSc `  W )
1514, 6, 11, 5, 1, 2asclf 17420 . 2  |-  ( ph  ->  A : ( Base `  F ) --> ( Base `  W ) )
165adantr 465 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  W  e.  LMod )
17 simprl 755 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  x  e.  ( Base `  F
) )
18 simprr 756 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  y  e.  ( Base `  F
) )
19 eqid 2443 . . . . . . 7  |-  ( 1r
`  W )  =  ( 1r `  W
)
202, 19rngidcl 16677 . . . . . 6  |-  ( W  e.  Ring  ->  ( 1r
`  W )  e.  ( Base `  W
) )
2111, 20syl 16 . . . . 5  |-  ( ph  ->  ( 1r `  W
)  e.  ( Base `  W ) )
2221adantr 465 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( 1r `  W )  e.  ( Base `  W
) )
23 eqid 2443 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
242, 4, 6, 23, 1, 3lmodvsdir 16984 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
)  /\  ( 1r `  W )  e.  (
Base `  W )
) )  ->  (
( x ( +g  `  F ) y ) ( .s `  W
) ( 1r `  W ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
2516, 17, 18, 22, 24syl13anc 1220 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
( x ( +g  `  F ) y ) ( .s `  W
) ( 1r `  W ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
261, 3grpcl 15563 . . . . . 6  |-  ( ( F  e.  Grp  /\  x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
) )  ->  (
x ( +g  `  F
) y )  e.  ( Base `  F
) )
27263expb 1188 . . . . 5  |-  ( ( F  e.  Grp  /\  ( x  e.  ( Base `  F )  /\  y  e.  ( Base `  F ) ) )  ->  ( x ( +g  `  F ) y )  e.  (
Base `  F )
)
2810, 27sylan 471 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
x ( +g  `  F
) y )  e.  ( Base `  F
) )
2914, 6, 1, 23, 19asclval 17418 . . . 4  |-  ( ( x ( +g  `  F
) y )  e.  ( Base `  F
)  ->  ( A `  ( x ( +g  `  F ) y ) )  =  ( ( x ( +g  `  F
) y ) ( .s `  W ) ( 1r `  W
) ) )
3028, 29syl 16 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( A `  ( x
( +g  `  F ) y ) )  =  ( ( x ( +g  `  F ) y ) ( .s
`  W ) ( 1r `  W ) ) )
3114, 6, 1, 23, 19asclval 17418 . . . . 5  |-  ( x  e.  ( Base `  F
)  ->  ( A `  x )  =  ( x ( .s `  W ) ( 1r
`  W ) ) )
3214, 6, 1, 23, 19asclval 17418 . . . . 5  |-  ( y  e.  ( Base `  F
)  ->  ( A `  y )  =  ( y ( .s `  W ) ( 1r
`  W ) ) )
3331, 32oveqan12d 6122 . . . 4  |-  ( ( x  e.  ( Base `  F )  /\  y  e.  ( Base `  F
) )  ->  (
( A `  x
) ( +g  `  W
) ( A `  y ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
3433adantl 466 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  (
( A `  x
) ( +g  `  W
) ( A `  y ) )  =  ( ( x ( .s `  W ) ( 1r `  W
) ) ( +g  `  W ) ( y ( .s `  W
) ( 1r `  W ) ) ) )
3525, 30, 343eqtr4d 2485 . 2  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  y  e.  ( Base `  F )
) )  ->  ( A `  ( x
( +g  `  F ) y ) )  =  ( ( A `  x ) ( +g  `  W ) ( A `
 y ) ) )
361, 2, 3, 4, 10, 13, 15, 35isghmd 15768 1  |-  ( ph  ->  A  e.  ( F 
GrpHom  W ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   ` cfv 5430  (class class class)co 6103   Basecbs 14186   +g cplusg 14250  Scalarcsca 14253   .scvsca 14254   Grpcgrp 15422    GrpHom cghm 15756   1rcur 16615   Ringcrg 16657   LModclmod 16960  algSccascl 17395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-plusg 14263  df-0g 14392  df-mnd 15427  df-grp 15557  df-ghm 15757  df-mgp 16604  df-ur 16616  df-rng 16659  df-lmod 16962  df-ascl 17398
This theorem is referenced by:  asclrhm  17424  asclinvg  30835
  Copyright terms: Public domain W3C validator