MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfval Structured version   Unicode version

Theorem asclfval 17410
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.)
Hypotheses
Ref Expression
asclfval.a  |-  A  =  (algSc `  W )
asclfval.f  |-  F  =  (Scalar `  W )
asclfval.k  |-  K  =  ( Base `  F
)
asclfval.s  |-  .x.  =  ( .s `  W )
asclfval.o  |-  .1.  =  ( 1r `  W )
Assertion
Ref Expression
asclfval  |-  A  =  ( x  e.  K  |->  ( x  .x.  .1.  ) )
Distinct variable groups:    x, K    x,  .1.    x,  .x.    x, W
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem asclfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 asclfval.a . 2  |-  A  =  (algSc `  W )
2 fveq2 5696 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
3 asclfval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
42, 3syl6eqr 2493 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
54fveq2d 5700 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
6 asclfval.k . . . . . 6  |-  K  =  ( Base `  F
)
75, 6syl6eqr 2493 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
8 fveq2 5696 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
9 asclfval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
108, 9syl6eqr 2493 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
11 eqidd 2444 . . . . . 6  |-  ( w  =  W  ->  x  =  x )
12 fveq2 5696 . . . . . . 7  |-  ( w  =  W  ->  ( 1r `  w )  =  ( 1r `  W
) )
13 asclfval.o . . . . . . 7  |-  .1.  =  ( 1r `  W )
1412, 13syl6eqr 2493 . . . . . 6  |-  ( w  =  W  ->  ( 1r `  w )  =  .1.  )
1510, 11, 14oveq123d 6117 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) ( 1r
`  w ) )  =  ( x  .x.  .1.  ) )
167, 15mpteq12dv 4375 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
)  |->  ( x ( .s `  w ) ( 1r `  w
) ) )  =  ( x  e.  K  |->  ( x  .x.  .1.  ) ) )
17 df-ascl 17391 . . . 4  |- algSc  =  ( w  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  w )
)  |->  ( x ( .s `  w ) ( 1r `  w
) ) ) )
183fveq2i 5699 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  (Scalar `  W
) )
196, 18eqtri 2463 . . . . . 6  |-  K  =  ( Base `  (Scalar `  W ) )
20 fvex 5706 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  e.  _V
2119, 20eqeltri 2513 . . . . 5  |-  K  e. 
_V
2221mptex 5953 . . . 4  |-  ( x  e.  K  |->  ( x 
.x.  .1.  ) )  e.  _V
2316, 17, 22fvmpt 5779 . . 3  |-  ( W  e.  _V  ->  (algSc `  W )  =  ( x  e.  K  |->  ( x  .x.  .1.  )
) )
24 fvprc 5690 . . . . 5  |-  ( -.  W  e.  _V  ->  (algSc `  W )  =  (/) )
25 mpt0 5543 . . . . 5  |-  ( x  e.  (/)  |->  ( x  .x.  .1.  ) )  =  (/)
2624, 25syl6eqr 2493 . . . 4  |-  ( -.  W  e.  _V  ->  (algSc `  W )  =  ( x  e.  (/)  |->  ( x 
.x.  .1.  ) )
)
27 fvprc 5690 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  (Scalar `  W )  =  (/) )
283, 27syl5eq 2487 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  F  =  (/) )
2928fveq2d 5700 . . . . . . 7  |-  ( -.  W  e.  _V  ->  (
Base `  F )  =  ( Base `  (/) ) )
30 base0 14218 . . . . . . 7  |-  (/)  =  (
Base `  (/) )
3129, 30syl6eqr 2493 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  F )  =  (/) )
326, 31syl5eq 2487 . . . . 5  |-  ( -.  W  e.  _V  ->  K  =  (/) )
3332mpteq1d 4378 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  K  |->  ( x  .x.  .1.  )
)  =  ( x  e.  (/)  |->  ( x  .x.  .1.  ) ) )
3426, 33eqtr4d 2478 . . 3  |-  ( -.  W  e.  _V  ->  (algSc `  W )  =  ( x  e.  K  |->  ( x  .x.  .1.  )
) )
3523, 34pm2.61i 164 . 2  |-  (algSc `  W )  =  ( x  e.  K  |->  ( x  .x.  .1.  )
)
361, 35eqtri 2463 1  |-  A  =  ( x  e.  K  |->  ( x  .x.  .1.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1369    e. wcel 1756   _Vcvv 2977   (/)c0 3642    e. cmpt 4355   ` cfv 5423  (class class class)co 6096   Basecbs 14179  Scalarcsca 14246   .scvsca 14247   1rcur 16608  algSccascl 17388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-slot 14183  df-base 14184  df-ascl 17391
This theorem is referenced by:  asclval  17411  asclfn  17412  asclf  17413  rnascl  17418  ressascl  17419  asclpropd  17421
  Copyright terms: Public domain W3C validator