MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfn Structured version   Unicode version

Theorem asclfn 18098
Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
asclfn.a  |-  A  =  (algSc `  W )
asclfn.f  |-  F  =  (Scalar `  W )
asclfn.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
asclfn  |-  A  Fn  K

Proof of Theorem asclfn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ovex 6224 . 2  |-  ( x ( .s `  W
) ( 1r `  W ) )  e. 
_V
2 asclfn.a . . 3  |-  A  =  (algSc `  W )
3 asclfn.f . . 3  |-  F  =  (Scalar `  W )
4 asclfn.k . . 3  |-  K  =  ( Base `  F
)
5 eqid 2382 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
6 eqid 2382 . . 3  |-  ( 1r
`  W )  =  ( 1r `  W
)
72, 3, 4, 5, 6asclfval 18096 . 2  |-  A  =  ( x  e.  K  |->  ( x ( .s
`  W ) ( 1r `  W ) ) )
81, 7fnmpti 5617 1  |-  A  Fn  K
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399    Fn wfn 5491   ` cfv 5496  (class class class)co 6196   Basecbs 14634  Scalarcsca 14705   .scvsca 14706   1rcur 17266  algSccascl 18073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-slot 14638  df-base 14639  df-ascl 18076
This theorem is referenced by:  issubassa2  18107  subrgascl  18276
  Copyright terms: Public domain W3C validator