MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum2 Structured version   Unicode version

Theorem arisum2 13822
Description: Arithmetic series sum of the first  N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.)
Assertion
Ref Expression
arisum2  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Distinct variable group:    k, N

Proof of Theorem arisum2
StepHypRef Expression
1 elnn0 10837 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnm1nn0 10877 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
3 nn0uz 11160 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
42, 3syl6eleq 2500 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
5 elfznn0 11824 . . . . . . 7  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
65adantl 464 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  NN0 )
76nn0cnd 10894 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
8 id 22 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
94, 7, 8fsum1p 13717 . . . 4  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k ) )
10 1e0p1 11046 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
1110oveq1i 6287 . . . . . . . 8  |-  ( 1 ... ( N  - 
1 ) )  =  ( ( 0  +  1 ) ... ( N  -  1 ) )
1211sumeq1i 13667 . . . . . . 7  |-  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  sum_ k  e.  ( (
0  +  1 ) ... ( N  - 
1 ) ) k
1312oveq2i 6288 . . . . . 6  |-  ( 0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )
14 fzfid 12122 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ... ( N  - 
1 ) )  e. 
Fin )
15 elfznn 11766 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  k  e.  NN )
1615adantl 464 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  NN )
1716nncnd 10591 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
1814, 17fsumcl 13702 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  e.  CC )
1918addid2d 9814 . . . . . 6  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
2013, 19syl5eqr 2457 . . . . 5  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
21 arisum 13821 . . . . . . 7  |-  ( ( N  -  1 )  e.  NN0  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
222, 21syl 17 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
23 nncn 10583 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
2423mulid1d 9642 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( N  x.  1 )  =  N )
2524oveq2d 6293 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2  x.  ( N  x.  1 ) )  =  ( 2  x.  N ) )
26232timesd 10821 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
2725, 26eqtrd 2443 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  ( N  x.  1 ) )  =  ( N  +  N ) )
2827oveq2d 6293 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  ( N  x.  1 ) ) )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
2923sqcld 12350 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  CC )
3029, 23, 23subsub4d 9997 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  N )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
3128, 30eqtr4d 2446 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  ( N  x.  1 ) ) )  =  ( ( ( N ^ 2 )  -  N )  -  N ) )
32 sq1 12305 . . . . . . . . . . . 12  |-  ( 1 ^ 2 )  =  1
3332a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1 ^ 2 )  =  1 )
3431, 33oveq12d 6295 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  (
2  x.  ( N  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
35 ax-1cn 9579 . . . . . . . . . . 11  |-  1  e.  CC
36 binom2sub 12327 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  ( N  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
3723, 35, 36sylancl 660 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  ( N  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
3829, 23subcld 9966 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  N )  e.  CC )
3935a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  1  e.  CC )
4038, 23, 39subsubd 9994 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
4134, 37, 403eqtr4d 2453 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  N )  -  ( N  -  1
) ) )
4241oveq1d 6292 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  ( N  - 
1 ) )  +  ( N  -  1 ) ) )
43 subcl 9854 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
4423, 35, 43sylancl 660 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
4538, 44npcand 9970 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( N ^ 2 )  -  N )  -  ( N  -  1 ) )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4642, 45eqtrd 2443 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4746oveq1d 6292 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 )  =  ( ( ( N ^ 2 )  -  N )  / 
2 ) )
4822, 47eqtrd 2443 . . . . 5  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
4920, 48eqtrd 2443 . . . 4  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  =  ( ( ( N ^ 2 )  -  N )  /  2
) )
509, 49eqtrd 2443 . . 3  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
51 oveq1 6284 . . . . . . . 8  |-  ( N  =  0  ->  ( N  -  1 )  =  ( 0  -  1 ) )
5251oveq2d 6293 . . . . . . 7  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  ( 0 ... (
0  -  1 ) ) )
53 0re 9625 . . . . . . . . 9  |-  0  e.  RR
54 ltm1 10422 . . . . . . . . 9  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
5553, 54ax-mp 5 . . . . . . . 8  |-  ( 0  -  1 )  <  0
56 0z 10915 . . . . . . . . 9  |-  0  e.  ZZ
57 peano2zm 10947 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  (
0  -  1 )  e.  ZZ )
5856, 57ax-mp 5 . . . . . . . . 9  |-  ( 0  -  1 )  e.  ZZ
59 fzn 11754 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( 0  -  1 )  e.  ZZ )  ->  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) ) )
6056, 58, 59mp2an 670 . . . . . . . 8  |-  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) )
6155, 60mpbi 208 . . . . . . 7  |-  ( 0 ... ( 0  -  1 ) )  =  (/)
6252, 61syl6eq 2459 . . . . . 6  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  (/) )
6362sumeq1d 13670 . . . . 5  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  sum_ k  e.  (/)  k )
64 sum0 13690 . . . . 5  |-  sum_ k  e.  (/)  k  =  0
6563, 64syl6eq 2459 . . . 4  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  0 )
66 sq0i 12303 . . . . . . . 8  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
67 id 22 . . . . . . . 8  |-  ( N  =  0  ->  N  =  0 )
6866, 67oveq12d 6295 . . . . . . 7  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  ( 0  -  0 ) )
69 0m0e0 10685 . . . . . . 7  |-  ( 0  -  0 )  =  0
7068, 69syl6eq 2459 . . . . . 6  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  0 )
7170oveq1d 6292 . . . . 5  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  ( 0  / 
2 ) )
72 2cn 10646 . . . . . 6  |-  2  e.  CC
73 2ne0 10668 . . . . . 6  |-  2  =/=  0
7472, 73div0i 10318 . . . . 5  |-  ( 0  /  2 )  =  0
7571, 74syl6eq 2459 . . . 4  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  0 )
7665, 75eqtr4d 2446 . . 3  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
7750, 76jaoi 377 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^ 2 )  -  N )  /  2 ) )
781, 77sylbi 195 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   (/)c0 3737   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   CCcc 9519   RRcr 9520   0cc0 9521   1c1 9522    + caddc 9524    x. cmul 9526    < clt 9657    - cmin 9840    / cdiv 10246   NNcn 10575   2c2 10625   NN0cn0 10835   ZZcz 10904   ZZ>=cuz 11126   ...cfz 11724   ^cexp 12208   sum_csu 13655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-sup 7934  df-oi 7968  df-card 8351  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-rp 11265  df-fz 11725  df-fzo 11853  df-seq 12150  df-exp 12209  df-fac 12396  df-bc 12423  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-sum 13656
This theorem is referenced by:  birthdaylem3  23607
  Copyright terms: Public domain W3C validator