MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum Unicode version

Theorem arisum 12594
Description: Arithmetic series sum of the first  N positive integers. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
Distinct variable group:    k, N

Proof of Theorem arisum
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 elnn0 10179 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 1z 10267 . . . . . . 7  |-  1  e.  ZZ
32a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ZZ )
4 nnz 10259 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
5 elfzelz 11015 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  ZZ )
65zcnd 10332 . . . . . . 7  |-  ( k  e.  ( 1 ... N )  ->  k  e.  CC )
76adantl 453 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  k  e.  CC )
8 id 20 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  k  =  ( j  +  1 ) )
93, 3, 4, 7, 8fsumshftm 12519 . . . . 5  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ j  e.  ( (
1  -  1 ) ... ( N  - 
1 ) ) ( j  +  1 ) )
10 1m1e0 10024 . . . . . . 7  |-  ( 1  -  1 )  =  0
1110oveq1i 6050 . . . . . 6  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
1211sumeq1i 12447 . . . . 5  |-  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( j  +  1 )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( j  +  1 )
139, 12syl6eq 2452 . . . 4  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( j  +  1 ) )
14 elfznn0 11039 . . . . . . . . 9  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  NN0 )
1514adantl 453 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  j  e.  NN0 )
16 bcnp1n 11560 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( ( j  +  1 )  _C  j )  =  ( j  +  1 ) )
1715, 16syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( j  +  1 )  _C  j )  =  ( j  +  1 ) )
1815nn0cnd 10232 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  j  e.  CC )
19 ax-1cn 9004 . . . . . . . . 9  |-  1  e.  CC
20 addcom 9208 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( j  +  1 )  =  ( 1  +  j ) )
2118, 19, 20sylancl 644 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( j  +  1 )  =  ( 1  +  j ) )
2221oveq1d 6055 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( j  +  1 )  _C  j )  =  ( ( 1  +  j )  _C  j ) )
2317, 22eqtr3d 2438 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( j  +  1 )  =  ( ( 1  +  j )  _C  j ) )
2423sumeq2dv 12452 . . . . 5  |-  ( N  e.  NN  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( j  +  1 )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( 1  +  j )  _C  j ) )
25 1nn0 10193 . . . . . 6  |-  1  e.  NN0
26 nnm1nn0 10217 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
27 bcxmas 12570 . . . . . 6  |-  ( ( 1  e.  NN0  /\  ( N  -  1
)  e.  NN0 )  ->  ( ( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  +  j )  _C  j ) )
2825, 26, 27sylancr 645 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  +  j )  _C  j
) )
2924, 28eqtr4d 2439 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( j  +  1 )  =  ( ( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) ) )
3019a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  CC )
31 nncn 9964 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
3230, 30, 31ppncand 9407 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  +  1 )  +  ( N  -  1 ) )  =  ( 1  +  N ) )
33 addcom 9208 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  N
)  =  ( N  +  1 ) )
3419, 31, 33sylancr 645 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  +  N )  =  ( N  + 
1 ) )
3532, 34eqtrd 2436 . . . . . 6  |-  ( N  e.  NN  ->  (
( 1  +  1 )  +  ( N  -  1 ) )  =  ( N  + 
1 ) )
3635oveq1d 6055 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  ( ( N  +  1 )  _C  ( N  -  1 ) ) )
37 nnnn0 10184 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
38 bcp1m1 11566 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  - 
1 ) )  =  ( ( ( N  +  1 )  x.  N )  /  2
) )
3937, 38syl 16 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  _C  ( N  -  1 ) )  =  ( ( ( N  +  1 )  x.  N )  / 
2 ) )
4031, 30, 31adddird 9069 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  =  ( ( N  x.  N )  +  ( 1  x.  N
) ) )
41 sqval 11396 . . . . . . . . . 10  |-  ( N  e.  CC  ->  ( N ^ 2 )  =  ( N  x.  N
) )
4241eqcomd 2409 . . . . . . . . 9  |-  ( N  e.  CC  ->  ( N  x.  N )  =  ( N ^
2 ) )
43 mulid2 9045 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
1  x.  N )  =  N )
4442, 43oveq12d 6058 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  x.  N
)  +  ( 1  x.  N ) )  =  ( ( N ^ 2 )  +  N ) )
4531, 44syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  x.  N
)  +  ( 1  x.  N ) )  =  ( ( N ^ 2 )  +  N ) )
4640, 45eqtrd 2436 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  =  ( ( N ^ 2 )  +  N ) )
4746oveq1d 6055 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  N
)  /  2 )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
4836, 39, 473eqtrd 2440 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
4913, 29, 483eqtrd 2440 . . 3  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
50 oveq2 6048 . . . . . . 7  |-  ( N  =  0  ->  (
1 ... N )  =  ( 1 ... 0
) )
51 fz10 11031 . . . . . . 7  |-  ( 1 ... 0 )  =  (/)
5250, 51syl6eq 2452 . . . . . 6  |-  ( N  =  0  ->  (
1 ... N )  =  (/) )
5352sumeq1d 12450 . . . . 5  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ k  e.  (/)  k )
54 sum0 12470 . . . . 5  |-  sum_ k  e.  (/)  k  =  0
5553, 54syl6eq 2452 . . . 4  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  0 )
56 sq0i 11429 . . . . . . . 8  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
57 id 20 . . . . . . . 8  |-  ( N  =  0  ->  N  =  0 )
5856, 57oveq12d 6058 . . . . . . 7  |-  ( N  =  0  ->  (
( N ^ 2 )  +  N )  =  ( 0  +  0 ) )
59 00id 9197 . . . . . . 7  |-  ( 0  +  0 )  =  0
6058, 59syl6eq 2452 . . . . . 6  |-  ( N  =  0  ->  (
( N ^ 2 )  +  N )  =  0 )
6160oveq1d 6055 . . . . 5  |-  ( N  =  0  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( 0  / 
2 ) )
62 2cn 10026 . . . . . 6  |-  2  e.  CC
63 2ne0 10039 . . . . . 6  |-  2  =/=  0
6462, 63div0i 9704 . . . . 5  |-  ( 0  /  2 )  =  0
6561, 64syl6eq 2452 . . . 4  |-  ( N  =  0  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  0 )
6655, 65eqtr4d 2439 . . 3  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
6749, 66jaoi 369 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  sum_ k  e.  ( 1 ... N ) k  =  ( ( ( N ^ 2 )  +  N )  /  2 ) )
681, 67sylbi 188 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   (/)c0 3588  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ...cfz 10999   ^cexp 11337    _C cbc 11548   sum_csu 12434
This theorem is referenced by:  arisum2  12595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435
  Copyright terms: Public domain W3C validator