Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arglem1N Structured version   Unicode version

Theorem arglem1N 35203
Description: Lemma for Desargues' law. Theorem 13.3 of [Crawley] p. 110, 3rd and 4th lines from bottom. In these lemmas,  P,  Q,  R,  S,  T,  U,  C,  D,  E,  F, and  G represent Crawley's a0, a1, a2, b0, b1, b2, c, z0, z1, z2, and p respectively. (Contributed by NM, 28-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
arglem1.j  |-  .\/  =  ( join `  K )
arglem1.m  |-  ./\  =  ( meet `  K )
arglem1.a  |-  A  =  ( Atoms `  K )
arglem1.f  |-  F  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
arglem1.g  |-  G  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )
Assertion
Ref Expression
arglem1N  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  F  e.  A )

Proof of Theorem arglem1N
StepHypRef Expression
1 arglem1.f . 2  |-  F  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
2 simpl11 1071 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  K  e.  HL )
3 hllat 34377 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  K  e.  Lat )
5 simpl12 1072 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  e.  A )
6 eqid 2467 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
7 arglem1.a . . . . . . 7  |-  A  =  ( Atoms `  K )
86, 7atbase 34303 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
95, 8syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  e.  ( Base `  K
) )
10 simpl13 1073 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  Q  e.  A )
116, 7atbase 34303 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1210, 11syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  Q  e.  ( Base `  K
) )
13 simpl21 1074 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  S  e.  A )
146, 7atbase 34303 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1513, 14syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  S  e.  ( Base `  K
) )
16 simpl22 1075 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  T  e.  A )
176, 7atbase 34303 . . . . . 6  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1816, 17syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  T  e.  ( Base `  K
) )
19 arglem1.j . . . . . 6  |-  .\/  =  ( join `  K )
206, 19latj4 15591 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( S  .\/  T ) )  =  ( ( P  .\/  S ) 
.\/  ( Q  .\/  T ) ) )
214, 9, 12, 15, 18, 20syl122anc 1237 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  Q
)  .\/  ( S  .\/  T ) )  =  ( ( P  .\/  S )  .\/  ( Q 
.\/  T ) ) )
22 arglem1.g . . . . . 6  |-  G  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )
23 simpr 461 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  G  e.  A )
2422, 23syl5eqelr 2560 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  e.  A )
25 simpl31 1077 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  =/=  S )
26 eqid 2467 . . . . . . . 8  |-  ( LLines `  K )  =  (
LLines `  K )
2719, 7, 26llni2 34525 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  /\  P  =/=  S
)  ->  ( P  .\/  S )  e.  (
LLines `  K ) )
282, 5, 13, 25, 27syl31anc 1231 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( P  .\/  S )  e.  ( LLines `  K )
)
29 simpl32 1078 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  Q  =/=  T )
3019, 7, 26llni2 34525 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  /\  Q  =/=  T
)  ->  ( Q  .\/  T )  e.  (
LLines `  K ) )
312, 10, 16, 29, 30syl31anc 1231 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( Q  .\/  T )  e.  ( LLines `  K )
)
32 arglem1.m . . . . . . 7  |-  ./\  =  ( meet `  K )
33 eqid 2467 . . . . . . 7  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
3419, 32, 7, 26, 332llnmj 34573 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  .\/  S )  e.  ( LLines `  K
)  /\  ( Q  .\/  T )  e.  (
LLines `  K ) )  ->  ( ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  e.  A  <->  ( ( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  ( LPlanes `  K )
) )
352, 28, 31, 34syl3anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  e.  A  <->  ( ( P 
.\/  S )  .\/  ( Q  .\/  T ) )  e.  ( LPlanes `  K ) ) )
3624, 35mpbid 210 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  ( LPlanes `  K )
)
3721, 36eqeltrd 2555 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  Q
)  .\/  ( S  .\/  T ) )  e.  ( LPlanes `  K )
)
38 simpl23 1076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  =/=  Q )
3919, 7, 26llni2 34525 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
LLines `  K ) )
402, 5, 10, 38, 39syl31anc 1231 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( P  .\/  Q )  e.  ( LLines `  K )
)
41 simpl33 1079 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  S  =/=  T )
4219, 7, 26llni2 34525 . . . . 5  |-  ( ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  /\  S  =/=  T
)  ->  ( S  .\/  T )  e.  (
LLines `  K ) )
432, 13, 16, 41, 42syl31anc 1231 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( S  .\/  T )  e.  ( LLines `  K )
)
4419, 32, 7, 26, 332llnmj 34573 . . . 4  |-  ( ( K  e.  HL  /\  ( P  .\/  Q )  e.  ( LLines `  K
)  /\  ( S  .\/  T )  e.  (
LLines `  K ) )  ->  ( ( ( P  .\/  Q ) 
./\  ( S  .\/  T ) )  e.  A  <->  ( ( P  .\/  Q
)  .\/  ( S  .\/  T ) )  e.  ( LPlanes `  K )
) )
452, 40, 43, 44syl3anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  e.  A  <->  ( ( P 
.\/  Q )  .\/  ( S  .\/  T ) )  e.  ( LPlanes `  K ) ) )
4637, 45mpbird 232 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  e.  A )
471, 46syl5eqel 2559 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   ` cfv 5588  (class class class)co 6285   Basecbs 14493   joincjn 15434   meetcmee 15435   Latclat 15535   Atomscatm 34277   HLchlt 34364   LLinesclln 34504   LPlanesclpl 34505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-poset 15436  df-plt 15448  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-p0 15529  df-lat 15536  df-clat 15598  df-oposet 34190  df-ol 34192  df-oml 34193  df-covers 34280  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-llines 34511  df-lplanes 34512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator