MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimlt0 Structured version   Unicode version

Theorem argimlt0 22974
Description: Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimlt0  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  A ) )  e.  ( -u pi (,) 0 ) )

Proof of Theorem argimlt0
StepHypRef Expression
1 simpr 461 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  A
)  <  0 )
21lt0ne0d 10125 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  A
)  =/=  0 )
3 fveq2 5856 . . . . . . 7  |-  ( A  =  0  ->  (
Im `  A )  =  ( Im ` 
0 ) )
4 im0 12967 . . . . . . 7  |-  ( Im
`  0 )  =  0
53, 4syl6eq 2500 . . . . . 6  |-  ( A  =  0  ->  (
Im `  A )  =  0 )
65necon3i 2683 . . . . 5  |-  ( ( Im `  A )  =/=  0  ->  A  =/=  0 )
72, 6syl 16 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  ->  A  =/=  0 )
8 logcl 22932 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
97, 8syldan 470 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( log `  A
)  e.  CC )
109imcld 13009 . 2  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  A ) )  e.  RR )
11 logcj 22967 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Im `  A )  =/=  0 )  -> 
( log `  (
* `  A )
)  =  ( * `
 ( log `  A
) ) )
122, 11syldan 470 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( log `  (
* `  A )
)  =  ( * `
 ( log `  A
) ) )
1312fveq2d 5860 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  ( * `  A ) ) )  =  ( Im `  ( * `  ( log `  A ) ) ) )
149imcjd 13019 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  (
* `  ( log `  A ) ) )  =  -u ( Im `  ( log `  A ) ) )
1513, 14eqtrd 2484 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  ( * `  A ) ) )  =  -u ( Im `  ( log `  A ) ) )
16 cjcl 12919 . . . . . . . 8  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
1716adantr 465 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( * `  A
)  e.  CC )
18 imcl 12925 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1918adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  A
)  e.  RR )
2019lt0neg1d 10129 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( ( Im `  A )  <  0  <->  0  <  -u ( Im `  A ) ) )
211, 20mpbid 210 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
0  <  -u ( Im
`  A ) )
22 imcj 12946 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
Im `  ( * `  A ) )  = 
-u ( Im `  A ) )
2322adantr 465 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  (
* `  A )
)  =  -u (
Im `  A )
)
2421, 23breqtrrd 4463 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
0  <  ( Im `  ( * `  A
) ) )
25 argimgt0 22973 . . . . . . 7  |-  ( ( ( * `  A
)  e.  CC  /\  0  <  ( Im `  ( * `  A
) ) )  -> 
( Im `  ( log `  ( * `  A ) ) )  e.  ( 0 (,) pi ) )
2617, 24, 25syl2anc 661 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  ( * `  A ) ) )  e.  ( 0 (,) pi ) )
27 eliooord 11594 . . . . . 6  |-  ( ( Im `  ( log `  ( * `  A
) ) )  e.  ( 0 (,) pi )  ->  ( 0  < 
( Im `  ( log `  ( * `  A ) ) )  /\  ( Im `  ( log `  ( * `
 A ) ) )  <  pi ) )
2826, 27syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( 0  <  (
Im `  ( log `  ( * `  A
) ) )  /\  ( Im `  ( log `  ( * `  A
) ) )  < 
pi ) )
2928simprd 463 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  ( * `  A ) ) )  <  pi )
3015, 29eqbrtrrd 4459 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  ->  -u ( Im `  ( log `  A ) )  <  pi )
31 pire 22827 . . . 4  |-  pi  e.  RR
32 ltnegcon1 10060 . . . 4  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  ( -u ( Im `  ( log `  A ) )  <  pi  <->  -u pi  <  ( Im `  ( log `  A ) ) ) )
3310, 31, 32sylancl 662 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( -u ( Im `  ( log `  A ) )  <  pi  <->  -u pi  <  ( Im `  ( log `  A ) ) ) )
3430, 33mpbid 210 . 2  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  ->  -u pi  <  ( Im
`  ( log `  A
) ) )
3528simpld 459 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
0  <  ( Im `  ( log `  (
* `  A )
) ) )
3635, 15breqtrd 4461 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
0  <  -u ( Im
`  ( log `  A
) ) )
3710lt0neg1d 10129 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( ( Im `  ( log `  A ) )  <  0  <->  0  <  -u ( Im `  ( log `  A ) ) ) )
3836, 37mpbird 232 . 2  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  A ) )  <  0 )
3931renegcli 9885 . . . 4  |-  -u pi  e.  RR
4039rexri 9649 . . 3  |-  -u pi  e.  RR*
41 0xr 9643 . . 3  |-  0  e.  RR*
42 elioo2 11580 . . 3  |-  ( (
-u pi  e.  RR*  /\  0  e.  RR* )  ->  ( ( Im `  ( log `  A ) )  e.  ( -u pi (,) 0 )  <->  ( (
Im `  ( log `  A ) )  e.  RR  /\  -u pi  <  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <  0 ) ) )
4340, 41, 42mp2an 672 . 2  |-  ( ( Im `  ( log `  A ) )  e.  ( -u pi (,) 0 )  <->  ( (
Im `  ( log `  A ) )  e.  RR  /\  -u pi  <  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <  0 ) )
4410, 34, 38, 43syl3anbrc 1181 1  |-  ( ( A  e.  CC  /\  ( Im `  A )  <  0 )  -> 
( Im `  ( log `  A ) )  e.  ( -u pi (,) 0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   RR*cxr 9630    < clt 9631   -ucneg 9811   (,)cioo 11539   *ccj 12910   Imcim 12912   picpi 13783   logclog 22918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10986  df-uz 11092  df-q 11193  df-rp 11231  df-xneg 11328  df-xadd 11329  df-xmul 11330  df-ioo 11543  df-ioc 11544  df-ico 11545  df-icc 11546  df-fz 11683  df-fzo 11806  df-fl 11910  df-mod 11978  df-seq 12089  df-exp 12148  df-fac 12335  df-bc 12362  df-hash 12387  df-shft 12881  df-cj 12913  df-re 12914  df-im 12915  df-sqrt 13049  df-abs 13050  df-limsup 13275  df-clim 13292  df-rlim 13293  df-sum 13490  df-ef 13784  df-sin 13786  df-cos 13787  df-pi 13789  df-struct 14615  df-ndx 14616  df-slot 14617  df-base 14618  df-sets 14619  df-ress 14620  df-plusg 14691  df-mulr 14692  df-starv 14693  df-sca 14694  df-vsca 14695  df-ip 14696  df-tset 14697  df-ple 14698  df-ds 14700  df-unif 14701  df-hom 14702  df-cco 14703  df-rest 14801  df-topn 14802  df-0g 14820  df-gsum 14821  df-topgen 14822  df-pt 14823  df-prds 14826  df-xrs 14880  df-qtop 14885  df-imas 14886  df-xps 14888  df-mre 14964  df-mrc 14965  df-acs 14967  df-mgm 15850  df-sgrp 15889  df-mnd 15899  df-submnd 15945  df-mulg 16038  df-cntz 16333  df-cmn 16778  df-psmet 18389  df-xmet 18390  df-met 18391  df-bl 18392  df-mopn 18393  df-fbas 18394  df-fg 18395  df-cnfld 18399  df-top 19376  df-bases 19378  df-topon 19379  df-topsp 19380  df-cld 19497  df-ntr 19498  df-cls 19499  df-nei 19576  df-lp 19614  df-perf 19615  df-cn 19705  df-cnp 19706  df-haus 19793  df-tx 20040  df-hmeo 20233  df-fil 20324  df-fm 20416  df-flim 20417  df-flf 20418  df-xms 20800  df-ms 20801  df-tms 20802  df-cncf 21359  df-limc 22247  df-dv 22248  df-log 22920
This theorem is referenced by:  logcnlem3  23001  atanlogaddlem  23220
  Copyright terms: Public domain W3C validator