MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimgt0 Structured version   Unicode version

Theorem argimgt0 22975
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimgt0  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  ( 0 (,) pi ) )

Proof of Theorem argimgt0
StepHypRef Expression
1 imcl 12926 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
2 gt0ne0 10024 . . . . . 6  |-  ( ( ( Im `  A
)  e.  RR  /\  0  <  ( Im `  A ) )  -> 
( Im `  A
)  =/=  0 )
31, 2sylan 471 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  A
)  =/=  0 )
4 fveq2 5856 . . . . . . 7  |-  ( A  =  0  ->  (
Im `  A )  =  ( Im ` 
0 ) )
5 im0 12968 . . . . . . 7  |-  ( Im
`  0 )  =  0
64, 5syl6eq 2500 . . . . . 6  |-  ( A  =  0  ->  (
Im `  A )  =  0 )
76necon3i 2683 . . . . 5  |-  ( ( Im `  A )  =/=  0  ->  A  =/=  0 )
83, 7syl 16 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  A  =/=  0 )
9 logcl 22934 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
108, 9syldan 470 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( log `  A
)  e.  CC )
1110imcld 13010 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  RR )
12 simpr 461 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  A ) )
13 abscl 13093 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1413adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  e.  RR )
1514recnd 9625 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  e.  CC )
1615mul01d 9782 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  0 )  =  0 )
17 simpl 457 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  A  e.  CC )
18 absrpcl 13103 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
198, 18syldan 470 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  e.  RR+ )
2019rpne0d 11272 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  =/=  0 )
2117, 15, 20divcld 10327 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( A  /  ( abs `  A ) )  e.  CC )
2214, 21immul2d 13043 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  (
( abs `  A
)  x.  ( A  /  ( abs `  A
) ) ) )  =  ( ( abs `  A )  x.  (
Im `  ( A  /  ( abs `  A
) ) ) ) )
2317, 15, 20divcan2d 10329 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  ( A  /  ( abs `  A
) ) )  =  A )
2423fveq2d 5860 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  (
( abs `  A
)  x.  ( A  /  ( abs `  A
) ) ) )  =  ( Im `  A ) )
2522, 24eqtr3d 2486 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  ( Im
`  ( A  / 
( abs `  A
) ) ) )  =  ( Im `  A ) )
2612, 16, 253brtr4d 4467 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  0 )  <  ( ( abs `  A )  x.  (
Im `  ( A  /  ( abs `  A
) ) ) ) )
27 0re 9599 . . . . . . . . 9  |-  0  e.  RR
2827a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  e.  RR )
2921imcld 13010 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( A  /  ( abs `  A
) ) )  e.  RR )
3028, 29, 19ltmul2d 11305 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  <  (
Im `  ( A  /  ( abs `  A
) ) )  <->  ( ( abs `  A )  x.  0 )  <  (
( abs `  A
)  x.  ( Im
`  ( A  / 
( abs `  A
) ) ) ) ) )
3126, 30mpbird 232 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  ( A  /  ( abs `  A ) ) ) )
32 efiarg 22970 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
338, 32syldan 470 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
3433fveq2d 5860 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  =  ( Im `  ( A  /  ( abs `  A
) ) ) )
3531, 34breqtrrd 4463 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
36 resinval 13852 . . . . . 6  |-  ( ( Im `  ( log `  A ) )  e.  RR  ->  ( sin `  ( Im `  ( log `  A ) ) )  =  ( Im
`  ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
3711, 36syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( sin `  (
Im `  ( log `  A ) ) )  =  ( Im `  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) ) ) )
3835, 37breqtrrd 4463 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( sin `  ( Im `  ( log `  A ) ) ) )
3911resincld 13860 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( sin `  (
Im `  ( log `  A ) ) )  e.  RR )
4039lt0neg2d 10130 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  <  ( sin `  ( Im `  ( log `  A ) ) )  <->  -u ( sin `  ( Im `  ( log `  A ) ) )  <  0 ) )
4138, 40mpbid 210 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u ( sin `  (
Im `  ( log `  A ) ) )  <  0 )
42 pire 22829 . . . . . . . . . . 11  |-  pi  e.  RR
43 readdcl 9578 . . . . . . . . . . 11  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( Im `  ( log `  A ) )  +  pi )  e.  RR )
4411, 42, 43sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  +  pi )  e.  RR )
4544adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  e.  RR )
46 df-neg 9813 . . . . . . . . . . . 12  |-  -u pi  =  ( 0  -  pi )
47 logimcl 22935 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
488, 47syldan 470 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
4948simpld 459 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u pi  <  ( Im
`  ( log `  A
) ) )
5042renegcli 9885 . . . . . . . . . . . . . 14  |-  -u pi  e.  RR
51 ltle 9676 . . . . . . . . . . . . . 14  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
5250, 11, 51sylancr 663 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
5349, 52mpd 15 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) )
5446, 53syl5eqbrr 4471 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  -  pi )  <_  ( Im `  ( log `  A ) ) )
5542a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  pi  e.  RR )
5628, 55, 11lesubaddd 10156 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( 0  -  pi )  <_  (
Im `  ( log `  A ) )  <->  0  <_  ( ( Im `  ( log `  A ) )  +  pi ) ) )
5754, 56mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <_  ( (
Im `  ( log `  A ) )  +  pi ) )
5857adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  0  <_  (
( Im `  ( log `  A ) )  +  pi ) )
5911, 28, 55leadd1d 10153 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  <_  0  <->  ( (
Im `  ( log `  A ) )  +  pi )  <_  (
0  +  pi ) ) )
6059biimpa 484 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  <_  ( 0  +  pi ) )
61 picn 22830 . . . . . . . . . . 11  |-  pi  e.  CC
6261addid2i 9771 . . . . . . . . . 10  |-  ( 0  +  pi )  =  pi
6360, 62syl6breq 4476 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  <_  pi )
6427, 42elicc2i 11601 . . . . . . . . 9  |-  ( ( ( Im `  ( log `  A ) )  +  pi )  e.  ( 0 [,] pi ) 
<->  ( ( ( Im
`  ( log `  A
) )  +  pi )  e.  RR  /\  0  <_  ( ( Im `  ( log `  A ) )  +  pi )  /\  ( ( Im
`  ( log `  A
) )  +  pi )  <_  pi ) )
6545, 58, 63, 64syl3anbrc 1181 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  e.  ( 0 [,] pi ) )
66 sinq12ge0 22879 . . . . . . . 8  |-  ( ( ( Im `  ( log `  A ) )  +  pi )  e.  ( 0 [,] pi )  ->  0  <_  ( sin `  ( ( Im
`  ( log `  A
) )  +  pi ) ) )
6765, 66syl 16 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  0  <_  ( sin `  ( ( Im
`  ( log `  A
) )  +  pi ) ) )
6811recnd 9625 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  CC )
69 sinppi 22860 . . . . . . . . 9  |-  ( ( Im `  ( log `  A ) )  e.  CC  ->  ( sin `  ( ( Im `  ( log `  A ) )  +  pi ) )  =  -u ( sin `  ( Im `  ( log `  A ) ) ) )
7068, 69syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( sin `  (
( Im `  ( log `  A ) )  +  pi ) )  =  -u ( sin `  (
Im `  ( log `  A ) ) ) )
7170adantr 465 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( sin `  (
( Im `  ( log `  A ) )  +  pi ) )  =  -u ( sin `  (
Im `  ( log `  A ) ) ) )
7267, 71breqtrd 4461 . . . . . 6  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  0  <_  -u ( sin `  ( Im `  ( log `  A ) ) ) )
7372ex 434 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  <_  0  ->  0  <_  -u ( sin `  (
Im `  ( log `  A ) ) ) ) )
7473con3d 133 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -.  0  <_  -u ( sin `  (
Im `  ( log `  A ) ) )  ->  -.  ( Im `  ( log `  A
) )  <_  0
) )
7539renegcld 9993 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u ( sin `  (
Im `  ( log `  A ) ) )  e.  RR )
76 ltnle 9667 . . . . 5  |-  ( (
-u ( sin `  (
Im `  ( log `  A ) ) )  e.  RR  /\  0  e.  RR )  ->  ( -u ( sin `  (
Im `  ( log `  A ) ) )  <  0  <->  -.  0  <_ 
-u ( sin `  (
Im `  ( log `  A ) ) ) ) )
7775, 27, 76sylancl 662 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u ( sin `  (
Im `  ( log `  A ) ) )  <  0  <->  -.  0  <_ 
-u ( sin `  (
Im `  ( log `  A ) ) ) ) )
78 ltnle 9667 . . . . 5  |-  ( ( 0  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  ->  (
0  <  ( Im `  ( log `  A
) )  <->  -.  (
Im `  ( log `  A ) )  <_ 
0 ) )
7927, 11, 78sylancr 663 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  <  (
Im `  ( log `  A ) )  <->  -.  (
Im `  ( log `  A ) )  <_ 
0 ) )
8074, 77, 793imtr4d 268 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u ( sin `  (
Im `  ( log `  A ) ) )  <  0  ->  0  <  ( Im `  ( log `  A ) ) ) )
8141, 80mpd 15 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  ( log `  A
) ) )
82 rpre 11237 . . . . . . . . 9  |-  ( -u A  e.  RR+  ->  -u A  e.  RR )
8382renegcld 9993 . . . . . . . 8  |-  ( -u A  e.  RR+  ->  -u -u A  e.  RR )
84 negneg 9874 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u -u A  =  A )
8584adantr 465 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u -u A  =  A
)
8685eleq1d 2512 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u -u A  e.  RR  <->  A  e.  RR ) )
8783, 86syl5ib 219 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u A  e.  RR+  ->  A  e.  RR ) )
88 lognegb 22952 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u A  e.  RR+  <->  (
Im `  ( log `  A ) )  =  pi ) )
898, 88syldan 470 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u A  e.  RR+  <->  (
Im `  ( log `  A ) )  =  pi ) )
90 reim0b 12934 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
9190adantr 465 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( A  e.  RR  <->  ( Im `  A )  =  0 ) )
9287, 89, 913imtr3d 267 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  =  pi  ->  ( Im `  A )  =  0 ) )
9392necon3d 2667 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  A )  =/=  0  ->  ( Im `  ( log `  A ) )  =/=  pi ) )
943, 93mpd 15 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  =/=  pi )
9594necomd 2714 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  pi  =/=  ( Im `  ( log `  A ) ) )
9648simprd 463 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  <_  pi )
9711, 55, 96leltned 9739 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  <  pi  <->  pi  =/=  ( Im `  ( log `  A ) ) ) )
9895, 97mpbird 232 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  <  pi )
99 0xr 9643 . . 3  |-  0  e.  RR*
10042rexri 9649 . . 3  |-  pi  e.  RR*
101 elioo2 11581 . . 3  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( Im `  ( log `  A ) )  e.  ( 0 (,) pi )  <->  ( (
Im `  ( log `  A ) )  e.  RR  /\  0  < 
( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <  pi ) ) )
10299, 100, 101mp2an 672 . 2  |-  ( ( Im `  ( log `  A ) )  e.  ( 0 (,) pi ) 
<->  ( ( Im `  ( log `  A ) )  e.  RR  /\  0  <  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <  pi ) )
10311, 81, 98, 102syl3anbrc 1181 1  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  ( 0 (,) pi ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   _ici 9497    + caddc 9498    x. cmul 9500   RR*cxr 9630    < clt 9631    <_ cle 9632    - cmin 9810   -ucneg 9811    / cdiv 10213   RR+crp 11231   (,)cioo 11540   [,]cicc 11543   Imcim 12913   abscabs 13049   expce 13779   sincsin 13781   picpi 13784   logclog 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ioc 11545  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12882  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-sum 13491  df-ef 13785  df-sin 13787  df-cos 13788  df-pi 13790  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cncf 21360  df-limc 22248  df-dv 22249  df-log 22922
This theorem is referenced by:  argimlt0  22976  logneg2  22978  logcnlem3  23003  atanlogaddlem  23222
  Copyright terms: Public domain W3C validator