MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimgt0 Structured version   Unicode version

Theorem argimgt0 23289
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimgt0  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  ( 0 (,) pi ) )

Proof of Theorem argimgt0
StepHypRef Expression
1 imcl 13091 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
2 gt0ne0 10057 . . . . . 6  |-  ( ( ( Im `  A
)  e.  RR  /\  0  <  ( Im `  A ) )  -> 
( Im `  A
)  =/=  0 )
31, 2sylan 469 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  A
)  =/=  0 )
4 fveq2 5848 . . . . . . 7  |-  ( A  =  0  ->  (
Im `  A )  =  ( Im ` 
0 ) )
5 im0 13133 . . . . . . 7  |-  ( Im
`  0 )  =  0
64, 5syl6eq 2459 . . . . . 6  |-  ( A  =  0  ->  (
Im `  A )  =  0 )
76necon3i 2643 . . . . 5  |-  ( ( Im `  A )  =/=  0  ->  A  =/=  0 )
83, 7syl 17 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  A  =/=  0 )
9 logcl 23246 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
108, 9syldan 468 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( log `  A
)  e.  CC )
1110imcld 13175 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  RR )
12 simpr 459 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  A ) )
13 abscl 13258 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1413adantr 463 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  e.  RR )
1514recnd 9651 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  e.  CC )
1615mul01d 9812 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  0 )  =  0 )
17 simpl 455 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  A  e.  CC )
18 absrpcl 13268 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
198, 18syldan 468 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  e.  RR+ )
2019rpne0d 11308 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( abs `  A
)  =/=  0 )
2117, 15, 20divcld 10360 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( A  /  ( abs `  A ) )  e.  CC )
2214, 21immul2d 13208 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  (
( abs `  A
)  x.  ( A  /  ( abs `  A
) ) ) )  =  ( ( abs `  A )  x.  (
Im `  ( A  /  ( abs `  A
) ) ) ) )
2317, 15, 20divcan2d 10362 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  ( A  /  ( abs `  A
) ) )  =  A )
2423fveq2d 5852 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  (
( abs `  A
)  x.  ( A  /  ( abs `  A
) ) ) )  =  ( Im `  A ) )
2522, 24eqtr3d 2445 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  ( Im
`  ( A  / 
( abs `  A
) ) ) )  =  ( Im `  A ) )
2612, 16, 253brtr4d 4424 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( abs `  A
)  x.  0 )  <  ( ( abs `  A )  x.  (
Im `  ( A  /  ( abs `  A
) ) ) ) )
27 0re 9625 . . . . . . . . 9  |-  0  e.  RR
2827a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  e.  RR )
2921imcld 13175 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( A  /  ( abs `  A
) ) )  e.  RR )
3028, 29, 19ltmul2d 11341 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  <  (
Im `  ( A  /  ( abs `  A
) ) )  <->  ( ( abs `  A )  x.  0 )  <  (
( abs `  A
)  x.  ( Im
`  ( A  / 
( abs `  A
) ) ) ) ) )
3126, 30mpbird 232 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  ( A  /  ( abs `  A ) ) ) )
32 efiarg 23284 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
338, 32syldan 468 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
3433fveq2d 5852 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  =  ( Im `  ( A  /  ( abs `  A
) ) ) )
3531, 34breqtrrd 4420 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
36 resinval 14077 . . . . . 6  |-  ( ( Im `  ( log `  A ) )  e.  RR  ->  ( sin `  ( Im `  ( log `  A ) ) )  =  ( Im
`  ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
3711, 36syl 17 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( sin `  (
Im `  ( log `  A ) ) )  =  ( Im `  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) ) ) )
3835, 37breqtrrd 4420 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( sin `  ( Im `  ( log `  A ) ) ) )
3911resincld 14085 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( sin `  (
Im `  ( log `  A ) ) )  e.  RR )
4039lt0neg2d 10162 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  <  ( sin `  ( Im `  ( log `  A ) ) )  <->  -u ( sin `  ( Im `  ( log `  A ) ) )  <  0 ) )
4138, 40mpbid 210 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u ( sin `  (
Im `  ( log `  A ) ) )  <  0 )
42 pire 23141 . . . . . . . . . . 11  |-  pi  e.  RR
43 readdcl 9604 . . . . . . . . . . 11  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( Im `  ( log `  A ) )  +  pi )  e.  RR )
4411, 42, 43sylancl 660 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  +  pi )  e.  RR )
4544adantr 463 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  e.  RR )
46 df-neg 9843 . . . . . . . . . . . 12  |-  -u pi  =  ( 0  -  pi )
47 logimcl 23247 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
488, 47syldan 468 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
4948simpld 457 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u pi  <  ( Im
`  ( log `  A
) ) )
5042renegcli 9915 . . . . . . . . . . . . . 14  |-  -u pi  e.  RR
51 ltle 9703 . . . . . . . . . . . . . 14  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
5250, 11, 51sylancr 661 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
5349, 52mpd 15 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) )
5446, 53syl5eqbrr 4428 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  -  pi )  <_  ( Im `  ( log `  A ) ) )
5542a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  pi  e.  RR )
5628, 55, 11lesubaddd 10188 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( 0  -  pi )  <_  (
Im `  ( log `  A ) )  <->  0  <_  ( ( Im `  ( log `  A ) )  +  pi ) ) )
5754, 56mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <_  ( (
Im `  ( log `  A ) )  +  pi ) )
5857adantr 463 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  0  <_  (
( Im `  ( log `  A ) )  +  pi ) )
5911, 28, 55leadd1d 10185 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  <_  0  <->  ( (
Im `  ( log `  A ) )  +  pi )  <_  (
0  +  pi ) ) )
6059biimpa 482 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  <_  ( 0  +  pi ) )
61 picn 23142 . . . . . . . . . . 11  |-  pi  e.  CC
6261addid2i 9801 . . . . . . . . . 10  |-  ( 0  +  pi )  =  pi
6360, 62syl6breq 4433 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  <_  pi )
6427, 42elicc2i 11642 . . . . . . . . 9  |-  ( ( ( Im `  ( log `  A ) )  +  pi )  e.  ( 0 [,] pi ) 
<->  ( ( ( Im
`  ( log `  A
) )  +  pi )  e.  RR  /\  0  <_  ( ( Im `  ( log `  A ) )  +  pi )  /\  ( ( Im
`  ( log `  A
) )  +  pi )  <_  pi ) )
6545, 58, 63, 64syl3anbrc 1181 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( ( Im
`  ( log `  A
) )  +  pi )  e.  ( 0 [,] pi ) )
66 sinq12ge0 23191 . . . . . . . 8  |-  ( ( ( Im `  ( log `  A ) )  +  pi )  e.  ( 0 [,] pi )  ->  0  <_  ( sin `  ( ( Im
`  ( log `  A
) )  +  pi ) ) )
6765, 66syl 17 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  0  <_  ( sin `  ( ( Im
`  ( log `  A
) )  +  pi ) ) )
6811recnd 9651 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  CC )
69 sinppi 23172 . . . . . . . . 9  |-  ( ( Im `  ( log `  A ) )  e.  CC  ->  ( sin `  ( ( Im `  ( log `  A ) )  +  pi ) )  =  -u ( sin `  ( Im `  ( log `  A ) ) ) )
7068, 69syl 17 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( sin `  (
( Im `  ( log `  A ) )  +  pi ) )  =  -u ( sin `  (
Im `  ( log `  A ) ) ) )
7170adantr 463 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  ( sin `  (
( Im `  ( log `  A ) )  +  pi ) )  =  -u ( sin `  (
Im `  ( log `  A ) ) ) )
7267, 71breqtrd 4418 . . . . . 6  |-  ( ( ( A  e.  CC  /\  0  <  ( Im
`  A ) )  /\  ( Im `  ( log `  A ) )  <_  0 )  ->  0  <_  -u ( sin `  ( Im `  ( log `  A ) ) ) )
7372ex 432 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  <_  0  ->  0  <_  -u ( sin `  (
Im `  ( log `  A ) ) ) ) )
7473con3d 133 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -.  0  <_  -u ( sin `  (
Im `  ( log `  A ) ) )  ->  -.  ( Im `  ( log `  A
) )  <_  0
) )
7539renegcld 10026 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u ( sin `  (
Im `  ( log `  A ) ) )  e.  RR )
76 ltnle 9694 . . . . 5  |-  ( (
-u ( sin `  (
Im `  ( log `  A ) ) )  e.  RR  /\  0  e.  RR )  ->  ( -u ( sin `  (
Im `  ( log `  A ) ) )  <  0  <->  -.  0  <_ 
-u ( sin `  (
Im `  ( log `  A ) ) ) ) )
7775, 27, 76sylancl 660 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u ( sin `  (
Im `  ( log `  A ) ) )  <  0  <->  -.  0  <_ 
-u ( sin `  (
Im `  ( log `  A ) ) ) ) )
78 ltnle 9694 . . . . 5  |-  ( ( 0  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  ->  (
0  <  ( Im `  ( log `  A
) )  <->  -.  (
Im `  ( log `  A ) )  <_ 
0 ) )
7927, 11, 78sylancr 661 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( 0  <  (
Im `  ( log `  A ) )  <->  -.  (
Im `  ( log `  A ) )  <_ 
0 ) )
8074, 77, 793imtr4d 268 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u ( sin `  (
Im `  ( log `  A ) ) )  <  0  ->  0  <  ( Im `  ( log `  A ) ) ) )
8141, 80mpd 15 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
0  <  ( Im `  ( log `  A
) ) )
82 rpre 11270 . . . . . . . . 9  |-  ( -u A  e.  RR+  ->  -u A  e.  RR )
8382renegcld 10026 . . . . . . . 8  |-  ( -u A  e.  RR+  ->  -u -u A  e.  RR )
84 negneg 9904 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u -u A  =  A )
8584adantr 463 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  -u -u A  =  A
)
8685eleq1d 2471 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u -u A  e.  RR  <->  A  e.  RR ) )
8783, 86syl5ib 219 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u A  e.  RR+  ->  A  e.  RR ) )
88 lognegb 23267 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u A  e.  RR+  <->  (
Im `  ( log `  A ) )  =  pi ) )
898, 88syldan 468 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( -u A  e.  RR+  <->  (
Im `  ( log `  A ) )  =  pi ) )
90 reim0b 13099 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
9190adantr 463 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( A  e.  RR  <->  ( Im `  A )  =  0 ) )
9287, 89, 913imtr3d 267 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  =  pi  ->  ( Im `  A )  =  0 ) )
9392necon3d 2627 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  A )  =/=  0  ->  ( Im `  ( log `  A ) )  =/=  pi ) )
943, 93mpd 15 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  =/=  pi )
9594necomd 2674 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  ->  pi  =/=  ( Im `  ( log `  A ) ) )
9648simprd 461 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  <_  pi )
9711, 55, 96leltned 9769 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( ( Im `  ( log `  A ) )  <  pi  <->  pi  =/=  ( Im `  ( log `  A ) ) ) )
9895, 97mpbird 232 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  <  pi )
99 0xr 9669 . . 3  |-  0  e.  RR*
10042rexri 9675 . . 3  |-  pi  e.  RR*
101 elioo2 11622 . . 3  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( Im `  ( log `  A ) )  e.  ( 0 (,) pi )  <->  ( (
Im `  ( log `  A ) )  e.  RR  /\  0  < 
( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <  pi ) ) )
10299, 100, 101mp2an 670 . 2  |-  ( ( Im `  ( log `  A ) )  e.  ( 0 (,) pi ) 
<->  ( ( Im `  ( log `  A ) )  e.  RR  /\  0  <  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <  pi ) )
10311, 81, 98, 102syl3anbrc 1181 1  |-  ( ( A  e.  CC  /\  0  <  ( Im `  A ) )  -> 
( Im `  ( log `  A ) )  e.  ( 0 (,) pi ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   CCcc 9519   RRcr 9520   0cc0 9521   _ici 9523    + caddc 9524    x. cmul 9526   RR*cxr 9656    < clt 9657    <_ cle 9658    - cmin 9840   -ucneg 9841    / cdiv 10246   RR+crp 11264   (,)cioo 11581   [,]cicc 11584   Imcim 13078   abscabs 13214   expce 14004   sincsin 14006   picpi 14009   logclog 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-pm 7459  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-fi 7904  df-sup 7934  df-oi 7968  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-mod 12033  df-seq 12150  df-exp 12209  df-fac 12396  df-bc 12423  df-hash 12451  df-shft 13047  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-limsup 13441  df-clim 13458  df-rlim 13459  df-sum 13656  df-ef 14010  df-sin 14012  df-cos 14013  df-pi 14015  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-starv 14922  df-sca 14923  df-vsca 14924  df-ip 14925  df-tset 14926  df-ple 14927  df-ds 14929  df-unif 14930  df-hom 14931  df-cco 14932  df-rest 15035  df-topn 15036  df-0g 15054  df-gsum 15055  df-topgen 15056  df-pt 15057  df-prds 15060  df-xrs 15114  df-qtop 15119  df-imas 15120  df-xps 15122  df-mre 15198  df-mrc 15199  df-acs 15201  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-mulg 16382  df-cntz 16677  df-cmn 17122  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-fbas 18734  df-fg 18735  df-cnfld 18739  df-top 19689  df-bases 19691  df-topon 19692  df-topsp 19693  df-cld 19810  df-ntr 19811  df-cls 19812  df-nei 19890  df-lp 19928  df-perf 19929  df-cn 20019  df-cnp 20020  df-haus 20107  df-tx 20353  df-hmeo 20546  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731  df-xms 21113  df-ms 21114  df-tms 21115  df-cncf 21672  df-limc 22560  df-dv 22561  df-log 23234
This theorem is referenced by:  argimlt0  23290  logneg2  23292  logcnlem3  23317  atanlogaddlem  23567
  Copyright terms: Public domain W3C validator