Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem5 Structured version   Visualization version   Unicode version

Theorem areacirclem5 32029
Description: Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) }
Assertion
Ref Expression
areacirclem5  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( S " { t } )  =  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) ) )
Distinct variable groups:    x, y,
t, R    t, S
Allowed substitution hints:    S( x, y)

Proof of Theorem areacirclem5
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . 4  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) }
21imaeq1i 5164 . . 3  |-  ( S
" { t } )  =  ( {
<. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^
2 ) ) }
" { t } )
3 vex 3047 . . . 4  |-  t  e. 
_V
4 imasng 5189 . . . 4  |-  ( t  e.  _V  ->  ( { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) } " { t } )  =  {
u  |  t {
<. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^
2 ) ) } u } )
53, 4ax-mp 5 . . 3  |-  ( {
<. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^
2 ) ) }
" { t } )  =  { u  |  t { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) } u }
6 df-br 4402 . . . . 5  |-  ( t { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) } u  <->  <. t ,  u >.  e.  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) } )
7 vex 3047 . . . . . 6  |-  u  e. 
_V
8 eleq1 2516 . . . . . . . 8  |-  ( x  =  t  ->  (
x  e.  RR  <->  t  e.  RR ) )
98anbi1d 710 . . . . . . 7  |-  ( x  =  t  ->  (
( x  e.  RR  /\  y  e.  RR )  <-> 
( t  e.  RR  /\  y  e.  RR ) ) )
10 oveq1 6295 . . . . . . . . 9  |-  ( x  =  t  ->  (
x ^ 2 )  =  ( t ^
2 ) )
1110oveq1d 6303 . . . . . . . 8  |-  ( x  =  t  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( t ^ 2 )  +  ( y ^ 2 ) ) )
1211breq1d 4411 . . . . . . 7  |-  ( x  =  t  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 )  <->  ( (
t ^ 2 )  +  ( y ^
2 ) )  <_ 
( R ^ 2 ) ) )
139, 12anbi12d 716 . . . . . 6  |-  ( x  =  t  ->  (
( ( x  e.  RR  /\  y  e.  RR )  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^
2 ) )  <->  ( (
t  e.  RR  /\  y  e.  RR )  /\  ( ( t ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) ) )
14 eleq1 2516 . . . . . . . 8  |-  ( y  =  u  ->  (
y  e.  RR  <->  u  e.  RR ) )
1514anbi2d 709 . . . . . . 7  |-  ( y  =  u  ->  (
( t  e.  RR  /\  y  e.  RR )  <-> 
( t  e.  RR  /\  u  e.  RR ) ) )
16 oveq1 6295 . . . . . . . . 9  |-  ( y  =  u  ->  (
y ^ 2 )  =  ( u ^
2 ) )
1716oveq2d 6304 . . . . . . . 8  |-  ( y  =  u  ->  (
( t ^ 2 )  +  ( y ^ 2 ) )  =  ( ( t ^ 2 )  +  ( u ^ 2 ) ) )
1817breq1d 4411 . . . . . . 7  |-  ( y  =  u  ->  (
( ( t ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 )  <->  ( (
t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 ) ) )
1915, 18anbi12d 716 . . . . . 6  |-  ( y  =  u  ->  (
( ( t  e.  RR  /\  y  e.  RR )  /\  (
( t ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^
2 ) )  <->  ( (
t  e.  RR  /\  u  e.  RR )  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) ) )
203, 7, 13, 19opelopab 4722 . . . . 5  |-  ( <.
t ,  u >.  e. 
{ <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) }  <->  ( ( t  e.  RR  /\  u  e.  RR )  /\  (
( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^
2 ) ) )
21 anass 654 . . . . 5  |-  ( ( ( t  e.  RR  /\  u  e.  RR )  /\  ( ( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) )  <-> 
( t  e.  RR  /\  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) ) )
226, 20, 213bitri 275 . . . 4  |-  ( t { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) } u  <->  ( t  e.  RR  /\  ( u  e.  RR  /\  (
( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^
2 ) ) ) )
2322abbii 2566 . . 3  |-  { u  |  t { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( R ^ 2 ) ) } u }  =  { u  |  (
t  e.  RR  /\  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) ) }
242, 5, 233eqtri 2476 . 2  |-  ( S
" { t } )  =  { u  |  ( t  e.  RR  /\  ( u  e.  RR  /\  (
( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^
2 ) ) ) }
25 simp3 1009 . . . . 5  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  t  e.  RR )
2625biantrurd 511 . . . 4  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) )  <-> 
( t  e.  RR  /\  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) ) ) )
2726abbidv 2568 . . 3  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  { u  |  ( u  e.  RR  /\  ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 ) ) }  =  { u  |  (
t  e.  RR  /\  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) ) } )
28 resqcl 12339 . . . . . . . . . . . 12  |-  ( R  e.  RR  ->  ( R ^ 2 )  e.  RR )
29283ad2ant1 1028 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR )
30 resqcl 12339 . . . . . . . . . . . 12  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
31303ad2ant3 1030 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
3229, 31resubcld 10044 . . . . . . . . . 10  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( R ^ 2 )  -  ( t ^ 2 ) )  e.  RR )
3332adantr 467 . . . . . . . . 9  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( ( R ^
2 )  -  (
t ^ 2 ) )  e.  RR )
34 absresq 13358 . . . . . . . . . . . . 13  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
35343ad2ant3 1030 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
3635breq1d 4411 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( ( abs `  t
) ^ 2 )  <_  ( R ^
2 )  <->  ( t ^ 2 )  <_ 
( R ^ 2 ) ) )
37 recn 9626 . . . . . . . . . . . . . 14  |-  ( t  e.  RR  ->  t  e.  CC )
3837abscld 13491 . . . . . . . . . . . . 13  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
39383ad2ant3 1030 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
40 simp1 1007 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  R  e.  RR )
4137absge0d 13499 . . . . . . . . . . . . 13  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
42413ad2ant3 1030 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
43 simp2 1008 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  0  <_  R )
4439, 40, 42, 43le2sqd 12448 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
4529, 31subge0d 10200 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) )  <->  ( t ^ 2 )  <_ 
( R ^ 2 ) ) )
4636, 44, 453bitr4d 289 . . . . . . . . . 10  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )
4746biimpa 487 . . . . . . . . 9  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )
4833, 47resqrtcld 13472 . . . . . . . 8  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  RR )
4948renegcld 10043 . . . . . . 7  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  -> 
-u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  RR )
5049rexrd 9687 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  -> 
-u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  RR* )
5148rexrd 9687 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  RR* )
52 iccval 11672 . . . . . 6  |-  ( (
-u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  RR*  /\  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e. 
RR* )  ->  ( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )  =  { u  e.  RR*  |  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) } )
5350, 51, 52syl2anc 666 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  { u  e. 
RR*  |  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) } )
54 iftrue 3886 . . . . . 6  |-  ( ( abs `  t )  <_  R  ->  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) )  =  ( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) )
5554adantl 468 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  if ( ( abs `  t )  <_  R ,  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ,  (/) )  =  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
56 absresq 13358 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  (
( abs `  u
) ^ 2 )  =  ( u ^
2 ) )
5732recnd 9666 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( R ^ 2 )  -  ( t ^ 2 ) )  e.  CC )
5857adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( ( R ^
2 )  -  (
t ^ 2 ) )  e.  CC )
5958sqsqrtd 13494 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ^ 2 )  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )
6056, 59breqan12rd 4418 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( ( ( abs `  u ) ^ 2 )  <_ 
( ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ^ 2 )  <-> 
( u ^ 2 )  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )
61 recn 9626 . . . . . . . . . . . . . 14  |-  ( u  e.  RR  ->  u  e.  CC )
6261abscld 13491 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  ( abs `  u )  e.  RR )
6362adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( abs `  u
)  e.  RR )
6448adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  RR )
6561absge0d 13499 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  0  <_  ( abs `  u
) )
6665adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  0  <_  ( abs `  u ) )
6733, 47sqrtge0d 13475 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  0  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
6867adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  0  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )
6963, 64, 66, 68le2sqd 12448 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( ( abs `  u )  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <->  ( ( abs `  u ) ^
2 )  <_  (
( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ^ 2 ) ) )
7031adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  u  e.  RR )  ->  ( t ^
2 )  e.  RR )
71 resqcl 12339 . . . . . . . . . . . . . 14  |-  ( u  e.  RR  ->  (
u ^ 2 )  e.  RR )
7271adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  u  e.  RR )  ->  ( u ^
2 )  e.  RR )
7329adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  u  e.  RR )  ->  ( R ^
2 )  e.  RR )
7470, 72, 73leaddsub2d 10212 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  u  e.  RR )  ->  ( ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 )  <->  ( u ^
2 )  <_  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
7574adantlr 720 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 )  <->  ( u ^
2 )  <_  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
7660, 69, 753bitr4rd 290 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 )  <->  ( abs `  u
)  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) )
77 simpr 463 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  u  e.  RR )
7877, 64absled 13485 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( ( abs `  u )  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <->  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
79 rexr 9683 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  u  e.  RR* )
8079adantl 468 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  u  e.  RR* )
8180biantrurd 511 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  <->  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) ) )
8276, 78, 813bitrd 283 . . . . . . . . 9  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  u  e.  RR )  ->  ( ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 )  <->  ( u  e. 
RR*  /\  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) ) )
8382pm5.32da 646 . . . . . . . 8  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( ( u  e.  RR  /\  ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 ) )  <->  ( u  e.  RR  /\  ( u  e.  RR*  /\  ( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) ) ) )
84 simprl 763 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  ->  u  e.  RR* )
8548adantr 467 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  ->  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  e.  RR )
86 mnfxr 11411 . . . . . . . . . . . . 13  |- -oo  e.  RR*
8786a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  -> -oo  e.  RR* )
8849adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  ->  -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  e.  RR )
8988rexrd 9687 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  ->  -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  e.  RR* )
90 mnflt 11422 . . . . . . . . . . . . . 14  |-  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  RR  -> -oo  <  -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
9149, 90syl 17 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  -> -oo  <  -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
9291adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  -> -oo  <  -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )
93 simprrl 773 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  ->  -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u
)
9487, 89, 84, 92, 93xrltletrd 11455 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  -> -oo  <  u
)
95 simprrr 774 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  ->  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) )
96 xrre 11461 . . . . . . . . . . 11  |-  ( ( ( u  e.  RR*  /\  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  RR )  /\  ( -oo  <  u  /\  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  ->  u  e.  RR )
9784, 85, 94, 95, 96syl22anc 1268 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  /\  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ) )  ->  u  e.  RR )
9897ex 436 . . . . . . . . 9  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( ( u  e. 
RR*  /\  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  ->  u  e.  RR ) )
9998pm4.71rd 640 . . . . . . . 8  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( ( u  e. 
RR*  /\  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  <->  ( u  e.  RR  /\  ( u  e.  RR*  /\  ( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) ) ) )
10083, 99bitr4d 260 . . . . . . 7  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  ( ( u  e.  RR  /\  ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 ) )  <->  ( u  e.  RR*  /\  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) ) )
101100abbidv 2568 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  { u  |  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) }  =  { u  |  ( u  e. 
RR*  /\  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) } )
102 df-rab 2745 . . . . . 6  |-  { u  e.  RR*  |  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) }  =  { u  |  (
u  e.  RR*  /\  ( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) }
103101, 102syl6eqr 2502 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  { u  |  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) }  =  { u  e.  RR*  |  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  <_  u  /\  u  <_  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) } )
10453, 55, 1033eqtr4rd 2495 . . . 4  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  ( abs `  t
)  <_  R )  ->  { u  |  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) }  =  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) ) )
10540, 39ltnled 9779 . . . . . . . 8  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( R  <  ( abs `  t
)  <->  -.  ( abs `  t )  <_  R
) )
106105biimprd 227 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( -.  ( abs `  t
)  <_  R  ->  R  <  ( abs `  t
) ) )
107106imdistani 695 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  -.  ( abs `  t
)  <_  R )  ->  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t ) ) )
108 df-rab 2745 . . . . . . 7  |-  { u  e.  RR  |  ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 ) }  =  {
u  |  ( u  e.  RR  /\  (
( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^
2 ) ) }
109293ad2ant1 1028 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  ( R ^ 2 )  e.  RR )
110313ad2ant1 1028 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  (
t ^ 2 )  e.  RR )
111713ad2ant3 1030 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  (
u ^ 2 )  e.  RR )
112110, 111readdcld 9667 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  (
( t ^ 2 )  +  ( u ^ 2 ) )  e.  RR )
11340, 39, 43, 42lt2sqd 12447 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( R  <  ( abs `  t
)  <->  ( R ^
2 )  <  (
( abs `  t
) ^ 2 ) ) )
11435breq2d 4413 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( R ^ 2 )  <  ( ( abs `  t ) ^ 2 )  <->  ( R ^ 2 )  < 
( t ^ 2 ) ) )
115113, 114bitrd 257 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( R  <  ( abs `  t
)  <->  ( R ^
2 )  <  (
t ^ 2 ) ) )
116115biimpa 487 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t ) )  -> 
( R ^ 2 )  <  ( t ^ 2 ) )
1171163adant3 1027 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  ( R ^ 2 )  < 
( t ^ 2 ) )
118 sqge0 12348 . . . . . . . . . . . . . 14  |-  ( u  e.  RR  ->  0  <_  ( u ^ 2 ) )
1191183ad2ant3 1030 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  0  <_  ( u ^ 2 ) )
120110, 111addge01d 10198 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  (
0  <_  ( u ^ 2 )  <->  ( t ^ 2 )  <_ 
( ( t ^
2 )  +  ( u ^ 2 ) ) ) )
121119, 120mpbid 214 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  (
t ^ 2 )  <_  ( ( t ^ 2 )  +  ( u ^ 2 ) ) )
122109, 110, 112, 117, 121ltletrd 9792 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  ( R ^ 2 )  < 
( ( t ^
2 )  +  ( u ^ 2 ) ) )
123109, 112ltnled 9779 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  (
( R ^ 2 )  <  ( ( t ^ 2 )  +  ( u ^
2 ) )  <->  -.  (
( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^
2 ) ) )
124122, 123mpbid 214 . . . . . . . . . 10  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t )  /\  u  e.  RR )  ->  -.  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) )
1251243expa 1207 . . . . . . . . 9  |-  ( ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t ) )  /\  u  e.  RR )  ->  -.  ( (
t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 ) )
126125ralrimiva 2801 . . . . . . . 8  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t ) )  ->  A. u  e.  RR  -.  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) )
127 rabeq0 3753 . . . . . . . 8  |-  ( { u  e.  RR  | 
( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) }  =  (/)  <->  A. u  e.  RR  -.  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) )
128126, 127sylibr 216 . . . . . . 7  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t ) )  ->  { u  e.  RR  |  ( ( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) }  =  (/) )
129108, 128syl5eqr 2498 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  R  <  ( abs `  t ) )  ->  { u  |  (
u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) }  =  (/) )
130107, 129syl 17 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  -.  ( abs `  t
)  <_  R )  ->  { u  |  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) }  =  (/) )
131 iffalse 3889 . . . . . 6  |-  ( -.  ( abs `  t
)  <_  R  ->  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) )  =  (/) )
132131adantl 468 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  -.  ( abs `  t
)  <_  R )  ->  if ( ( abs `  t )  <_  R ,  ( -u ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ,  (/) )  =  (/) )
133130, 132eqtr4d 2487 . . . 4  |-  ( ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  /\  -.  ( abs `  t
)  <_  R )  ->  { u  |  ( u  e.  RR  /\  ( ( t ^
2 )  +  ( u ^ 2 ) )  <_  ( R ^ 2 ) ) }  =  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) ) )
134104, 133pm2.61dan 799 . . 3  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  { u  |  ( u  e.  RR  /\  ( ( t ^ 2 )  +  ( u ^
2 ) )  <_ 
( R ^ 2 ) ) }  =  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) ) )
13527, 134eqtr3d 2486 . 2  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  { u  |  ( t  e.  RR  /\  ( u  e.  RR  /\  (
( t ^ 2 )  +  ( u ^ 2 ) )  <_  ( R ^
2 ) ) ) }  =  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) ) )
13624, 135syl5eq 2496 1  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( S " { t } )  =  if ( ( abs `  t
)  <_  R , 
( -u ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) [,] ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) ) ,  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   {cab 2436   A.wral 2736   {crab 2740   _Vcvv 3044   (/)c0 3730   ifcif 3880   {csn 3967   <.cop 3973   class class class wbr 4401   {copab 4459   "cima 4836   ` cfv 5581  (class class class)co 6288   CCcc 9534   RRcr 9535   0cc0 9536    + caddc 9539   -oocmnf 9670   RR*cxr 9671    < clt 9672    <_ cle 9673    - cmin 9857   -ucneg 9858   2c2 10656   [,]cicc 11635   ^cexp 12269   sqrcsqrt 13289   abscabs 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-sup 7953  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-n0 10867  df-z 10935  df-uz 11157  df-rp 11300  df-icc 11639  df-seq 12211  df-exp 12270  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292
This theorem is referenced by:  areacirc  32030
  Copyright terms: Public domain W3C validator