Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Unicode version

Theorem areacirclem4 28499
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem4
StepHypRef Expression
1 eqid 2443 . 2  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
21mulcn 20455 . . 3  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
32a1i 11 . 2  |-  ( R  e.  RR+  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
4 rpcn 11011 . . . 4  |-  ( R  e.  RR+  ->  R  e.  CC )
54sqcld 12018 . . 3  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  CC )
6 rpre 11009 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
76renegcld 9787 . . . . 5  |-  ( R  e.  RR+  ->  -u R  e.  RR )
8 iccssre 11389 . . . . 5  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
97, 6, 8syl2anc 661 . . . 4  |-  ( R  e.  RR+  ->  ( -u R [,] R )  C_  RR )
10 ax-resscn 9351 . . . 4  |-  RR  C_  CC
119, 10syl6ss 3380 . . 3  |-  ( R  e.  RR+  ->  ( -u R [,] R )  C_  CC )
12 ssid 3387 . . . 4  |-  CC  C_  CC
1312a1i 11 . . 3  |-  ( R  e.  RR+  ->  CC  C_  CC )
14 cncfmptc 20499 . . 3  |-  ( ( ( R ^ 2 )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( R ^ 2 ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
155, 11, 13, 14syl3anc 1218 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( R ^ 2 ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
161addcn 20453 . . . 4  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1716a1i 11 . . 3  |-  ( R  e.  RR+  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
1811sselda 3368 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  CC )
194adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  e.  CC )
20 rpne0 11018 . . . . . . . . 9  |-  ( R  e.  RR+  ->  R  =/=  0 )
2120adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  =/=  0 )
2218, 19, 21divcld 10119 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  e.  CC )
23 asinval 22289 . . . . . . 7  |-  ( ( t  /  R )  e.  CC  ->  (arcsin `  ( t  /  R
) )  =  (
-u _i  x.  ( log `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
2422, 23syl 16 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
(arcsin `  ( t  /  R ) )  =  ( -u _i  x.  ( log `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
25 ax-icn 9353 . . . . . . . . . . . 12  |-  _i  e.  CC
2625a1i 11 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  _i  e.  CC )
2726, 22mulcld 9418 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  e.  CC )
28 ax-1cn 9352 . . . . . . . . . . . . 13  |-  1  e.  CC
2928a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
1  e.  CC )
3022sqcld 12018 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  CC )
3129, 30subcld 9731 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  CC )
3231sqrcld 12935 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  CC )
3327, 32addcld 9417 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  CC )
34 0lt1 9874 . . . . . . . . . . . . . . 15  |-  0  <  1
35 simp3 990 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
t  =  0 )
3635oveq1d 6118 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( t  /  R
)  =  ( 0  /  R ) )
374, 20div0d 10118 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( 0  /  R )  =  0 )
38373ad2ant1 1009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  /  R
)  =  0 )
3936, 38eqtrd 2475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( t  /  R
)  =  0 )
4039oveq2d 6119 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( _i  x.  (
t  /  R ) )  =  ( _i  x.  0 ) )
41 it0e0 10559 . . . . . . . . . . . . . . . . . . . 20  |-  ( _i  x.  0 )  =  0
4240, 41syl6eq 2491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( _i  x.  (
t  /  R ) )  =  0 )
4339oveq1d 6118 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( t  /  R ) ^ 2 )  =  ( 0 ^ 2 ) )
4443oveq2d 6119 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  =  ( 1  -  ( 0 ^ 2 ) ) )
4544fveq2d 5707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( sqr `  ( 1  -  (
0 ^ 2 ) ) ) )
46 sq0 11969 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0 ^ 2 )  =  0
4746oveq2i 6114 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  -  ( 0 ^ 2 ) )  =  ( 1  -  0 )
48 1m0e1 10444 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  -  0 )  =  1
4947, 48eqtri 2463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  -  ( 0 ^ 2 ) )  =  1
5049fveq2i 5706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sqr `  ( 1  -  (
0 ^ 2 ) ) )  =  ( sqr `  1 )
51 sqr1 12773 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sqr `  1 )  =  1
5250, 51eqtri 2463 . . . . . . . . . . . . . . . . . . . 20  |-  ( sqr `  ( 1  -  (
0 ^ 2 ) ) )  =  1
5345, 52syl6eq 2491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  1 )
5442, 53oveq12d 6121 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( 0  +  1 ) )
55 0p1e1 10445 . . . . . . . . . . . . . . . . . 18  |-  ( 0  +  1 )  =  1
5654, 55syl6eq 2491 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  1 )
5756breq2d 4316 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <->  0  <  1 ) )
58 0re 9398 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
5958a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
0  e.  RR )
60 1re 9397 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
6160a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
1  e.  RR )
6256, 61eqeltrd 2517 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )
6359, 62ltnled 9533 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 ) )
6457, 63bitr3d 255 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  1  <->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
6534, 64mpbii 211 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  ->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 )
66653expa 1187 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =  0 )  ->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 )
6766olcd 393 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =  0 )  ->  ( -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
68 inelr 10324 . . . . . . . . . . . . . 14  |-  -.  _i  e.  RR
6927, 32pncand 9732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( _i  x.  ( t  /  R
) ) )
70693adant3 1008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  -  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  =  ( _i  x.  (
t  /  R ) ) )
7170oveq1d 6118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) )  =  ( ( _i  x.  ( t  /  R
) )  x.  ( R  /  t ) ) )
7225a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  _i  e.  CC )
73223adant3 1008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
t  /  R )  e.  CC )
7443ad2ant1 1009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  e.  CC )
75183adant3 1008 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  e.  CC )
76 simp3 990 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  =/=  0 )
7774, 75, 76divcld 10119 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( R  /  t )  e.  CC )
7872, 73, 77mulassd 9421 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( _i  x.  (
t  /  R ) )  x.  ( R  /  t ) )  =  ( _i  x.  ( ( t  /  R )  x.  ( R  /  t ) ) ) )
7971, 78eqtrd 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) )  =  ( _i  x.  (
( t  /  R
)  x.  ( R  /  t ) ) ) )
80203ad2ant1 1009 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  =/=  0 )
8175, 74, 76, 80divcan6d 10138 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( t  /  R
)  x.  ( R  /  t ) )  =  1 )
8281oveq2d 6119 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
_i  x.  ( (
t  /  R )  x.  ( R  / 
t ) ) )  =  ( _i  x.  1 ) )
8372mulid1d 9415 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
_i  x.  1 )  =  _i )
8479, 82, 833eqtrrd 2480 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  _i  =  ( ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  x.  ( R  /  t ) ) )
8584adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  _i  =  ( ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) ) )
86 simpr 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR )
8760a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
1  e.  RR )
889sselda 3368 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  RR )
896adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  e.  RR )
9088, 89, 21redivcld 10171 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  e.  RR )
9190resqcld 12046 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  RR )
9287, 91resubcld 9788 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  RR )
93 elicc2 11372 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
947, 6, 93syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
9560a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  RR )
96 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  RR )
976adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR )
9820adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  =/=  0 )
9996, 97, 98redivcld 10171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  /  R )  e.  RR )
10099resqcld 12046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  e.  RR )
10195, 100subge0d 9941 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) )  <->  ( (
t  /  R ) ^ 2 )  <_ 
1 ) )
102 recn 9384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  t  e.  CC )
103102adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  CC )
1044adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  CC )
105103, 104, 98sqdivd 12033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  =  ( ( t ^ 2 )  / 
( R ^ 2 ) ) )
106105breq1d 4314 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <_  1  <->  ( (
t ^ 2 )  /  ( R ^
2 ) )  <_ 
1 ) )
107 resqcl 11945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
108107adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
1096resqcld 12046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR )
110 rpgt0 11014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( R  e.  RR+  ->  0  < 
R )
11158a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  e.  RR )
112 0le0 10423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  0  <_  0
113112a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  <_ 
0 )
114 rpge0 11015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  <_  R )
115111, 6, 113, 114lt2sqd 12054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  ( 0 ^ 2 )  < 
( R ^ 2 ) ) )
11646a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  ( 0 ^ 2 )  =  0 )
117116breq1d 4314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( R  e.  RR+  ->  ( ( 0 ^ 2 )  <  ( R ^
2 )  <->  0  <  ( R ^ 2 ) ) )
118115, 117bitrd 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  0  <  ( R ^ 2 ) ) )
119110, 118mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  e.  RR+  ->  0  < 
( R ^ 2 ) )
120109, 119elrpd 11037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR+ )
121120adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR+ )
122108, 95, 121ledivmuld 11088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <_  1  <->  ( t ^ 2 )  <_ 
( ( R ^
2 )  x.  1 ) ) )
123 absresq 12803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
124123eqcomd 2448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  (
t ^ 2 )  =  ( ( abs `  t ) ^ 2 ) )
1255mulid1d 9415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  x.  1 )  =  ( R ^ 2 ) )
126124, 125breqan12rd 4320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <_  ( ( R ^ 2 )  x.  1 )  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
127102abscld 12934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
128127adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
129102absge0d 12942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
130129adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
131114adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  R )
132128, 97, 130, 131le2sqd 12055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
13396, 97absled 12929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
134126, 132, 1333bitr2d 281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <_  ( ( R ^ 2 )  x.  1 )  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
135122, 134bitrd 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <_  1  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
136101, 106, 1353bitrrd 280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  <->  0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
137136biimpd 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  ->  0  <_  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
138137exp4b 607 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <_  t  ->  ( t  <_  R  ->  0  <_  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
1391383impd 1201 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
14094, 139sylbid 215 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  ->  0  <_  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )
141140imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
14292, 141resqrcld 12916 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
1431423adant3 1008 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
144143adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
14586, 144resubcld 9788 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR )
14663ad2ant1 1009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  e.  RR )
147883adant3 1008 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  e.  RR )
148146, 147, 76redivcld 10171 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( R  /  t )  e.  RR )
149148adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( R  / 
t )  e.  RR )
150145, 149remulcld 9426 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  x.  ( R  /  t ) )  e.  RR )
15185, 150eqeltrd 2517 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  _i  e.  RR )
152151ex 434 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  ->  _i  e.  RR ) )
1531523expa 1187 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  ->  _i  e.  RR ) )
15468, 153mtoi 178 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR )
155154orcd 392 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  ( -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
15667, 155pm2.61dane 2701 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
157 ianor 488 . . . . . . . . . . 11  |-  ( -.  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 )  <-> 
( -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
158156, 157sylibr 212 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  -.  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
159 mnfxr 11106 . . . . . . . . . . . 12  |- -oo  e.  RR*
160 elioc2 11370 . . . . . . . . . . . 12  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( -oo (,] 0 )  <->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) ) )
161159, 58, 160mp2an 672 . . . . . . . . . . 11  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  <->  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  /\  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 ) )
162 3simpb 986 . . . . . . . . . . 11  |-  ( ( ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  /\ -oo 
<  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  /\  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
163161, 162sylbi 195 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  ->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
164158, 163nsyl 121 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( -oo (,] 0 ) )
16533, 164eldifd 3351 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( CC 
\  ( -oo (,] 0 ) ) )
166 fvres 5716 . . . . . . . 8  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) )  ->  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )
167165, 166syl 16 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )
168167oveq2d 6119 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( -u _i  x.  (
( log  |`  ( CC 
\  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )  =  ( -u _i  x.  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
16924, 168eqtr4d 2478 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
(arcsin `  ( t  /  R ) )  =  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
170169mpteq2dva 4390 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  (arcsin `  ( t  /  R
) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) ) )
171 negicn 9623 . . . . . . 7  |-  -u _i  e.  CC
172171a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  -u _i  e.  CC )
173 cncfmptc 20499 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( t  e.  (
-u R [,] R
)  |->  -u _i )  e.  ( ( -u R [,] R ) -cn-> CC ) )
174172, 11, 13, 173syl3anc 1218 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  -u _i )  e.  ( ( -u R [,] R )
-cn-> CC ) )
1751cnfldtopon 20374 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
176175a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
177 resttopon 18777 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( -u R [,] R ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
178176, 11, 177syl2anc 661 . . . . . . 7  |-  ( R  e.  RR+  ->  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
179 eqid 2443 . . . . . . . . . 10  |-  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
180165, 179fmptd 5879 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) )
181 difssd 3496 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( CC 
\  ( -oo (,] 0 ) )  C_  CC )
18218, 19, 21divrec2d 10123 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  =  ( ( 1  /  R )  x.  t ) )
183182oveq2d 6119 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  =  ( _i  x.  ( ( 1  /  R )  x.  t ) ) )
1844, 20reccld 10112 . . . . . . . . . . . . . . . 16  |-  ( R  e.  RR+  ->  ( 1  /  R )  e.  CC )
185184adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  /  R
)  e.  CC )
18626, 185, 18mulassd 9421 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( 1  /  R
) )  x.  t
)  =  ( _i  x.  ( ( 1  /  R )  x.  t ) ) )
187183, 186eqtr4d 2478 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  =  ( ( _i  x.  ( 1  /  R ) )  x.  t ) )
188187mpteq2dva 4390 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( t  /  R ) ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( 1  /  R ) )  x.  t ) ) )
18925a1i 11 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  _i  e.  CC )
190189, 184mulcld 9418 . . . . . . . . . . . . . 14  |-  ( R  e.  RR+  ->  ( _i  x.  ( 1  /  R ) )  e.  CC )
191 cncfmptc 20499 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  (
1  /  R ) )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( _i  x.  ( 1  /  R ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
192190, 11, 13, 191syl3anc 1218 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( 1  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
193 cncfmptid 20500 . . . . . . . . . . . . . 14  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( t  e.  (
-u R [,] R
)  |->  t )  e.  ( ( -u R [,] R ) -cn-> CC ) )
19411, 13, 193syl2anc 661 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  t )  e.  ( ( -u R [,] R ) -cn-> CC ) )
1951, 3, 192, 194cncfmpt2f 20502 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( 1  /  R ) )  x.  t ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
196188, 195eqeltrd 2517 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( t  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
19719, 32mulcld 9418 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
198197, 19, 21divrec2d 10123 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  /  R )  =  ( ( 1  /  R )  x.  ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
19932, 19, 21divcan3d 10124 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  /  R )  =  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
200109adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  e.  RR )
2016sqge0d 12047 . . . . . . . . . . . . . . . . . 18  |-  ( R  e.  RR+  ->  0  <_ 
( R ^ 2 ) )
202201adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  ( R ^ 2 ) )
203200, 202, 92, 141sqrmuld 12923 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
2045adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  e.  CC )
205204, 29, 30subdid 9812 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( ( R ^ 2 )  x.  1 )  -  ( ( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) ) )
206204mulid1d 9415 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  1 )  =  ( R ^ 2 ) )
20718, 19, 21sqdivd 12033 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  =  ( ( t ^ 2 )  /  ( R ^
2 ) ) )
208207oveq2d 6119 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( ( R ^ 2 )  x.  ( ( t ^ 2 )  / 
( R ^ 2 ) ) ) )
20918sqcld 12018 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t ^ 2 )  e.  CC )
210 sqne0 11944 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  CC  ->  (
( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
2114, 210syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
21220, 211mpbird 232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =/=  0 )
213212adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  =/=  0 )
214209, 204, 213divcan2d 10121 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t ^ 2 )  /  ( R ^ 2 ) ) )  =  ( t ^ 2 ) )
215208, 214eqtrd 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( t ^ 2 ) )
216206, 215oveq12d 6121 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( R ^ 2 )  x.  1 )  -  (
( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
217205, 216eqtrd 2475 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
218217fveq2d 5707 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
219114adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  R )
22089, 219sqrsqd 12918 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  ( R ^ 2 ) )  =  R )
221220oveq1d 6118 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )
222203, 218, 2213eqtr3rd 2484 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
223222oveq2d 6119 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( 1  /  R )  x.  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
224198, 199, 2233eqtr3d 2483 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
225224mpteq2dva 4390 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
226 cncfmptc 20499 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  R
)  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( 1  /  R ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
227184, 11, 13, 226syl3anc 1218 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( 1  /  R ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
228 areacirclem2 28497 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2296, 114, 228syl2anc 661 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2301, 3, 227, 229cncfmpt2f 20502 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
231225, 230eqeltrd 2517 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2321, 17, 196, 231cncfmpt2f 20502 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
233 cncffvrn 20486 . . . . . . . . . 10  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  (
t  e.  ( -u R [,] R )  |->  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )  ->  (
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) )  <-> 
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) ) )
234181, 232, 233syl2anc 661 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC  \  ( -oo (,] 0 ) ) )  <-> 
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) ) )
235180, 234mpbird 232 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) ) )
236 eqid 2443 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  =  ( ( TopOpen ` fld )t  ( -u R [,] R ) )
237 eqid 2443 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) )  =  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) )
2381, 236, 237cncfcn 20497 . . . . . . . . 9  |-  ( ( ( -u R [,] R )  C_  CC  /\  ( CC  \  ( -oo (,] 0 ) ) 
C_  CC )  -> 
( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) ) ) )
23911, 181, 238syl2anc 661 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( (
-u R [,] R
) -cn-> ( CC  \ 
( -oo (,] 0 ) ) )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) ) ) )
240235, 239eleqtrd 2519 . . . . . . 7  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) ) ) )
241 eqid 2443 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
242241logcn 22104 . . . . . . . . 9  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )
243 difss 3495 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  C_  CC
244 eqid 2443 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  CC )  =  ( ( TopOpen ` fld )t  CC )
2451, 237, 244cncfcn 20497 . . . . . . . . . 10  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
246243, 12, 245mp2an 672 . . . . . . . . 9  |-  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) )
247242, 246eleqtri 2515 . . . . . . . 8  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) )
248247a1i 11 . . . . . . 7  |-  ( R  e.  RR+  ->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
249178, 240, 248cnmpt11f 19249 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) `  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  CC ) ) )
2501, 236, 244cncfcn 20497 . . . . . . 7  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( ( -u R [,] R ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
25111, 13, 250syl2anc 661 . . . . . 6  |-  ( R  e.  RR+  ->  ( (
-u R [,] R
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
252249, 251eleqtrrd 2520 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) `  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2531, 3, 174, 252cncfmpt2f 20502 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
254170, 253eqeltrd 2517 . . 3  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  (arcsin `  ( t  /  R
) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
255224oveq2d 6119 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( ( 1  /  R )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
256204, 209subcld 9731 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  -  (
t ^ 2 ) )  e.  CC )
257256sqrcld 12935 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  CC )
25822, 185, 257mulassd 9421 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( t  /  R )  x.  ( 1  /  R
) )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( ( 1  /  R )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
25918, 19, 21divrecd 10122 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  =  ( t  x.  ( 1  /  R ) ) )
260259oveq1d 6118 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  (
1  /  R ) )  =  ( ( t  x.  ( 1  /  R ) )  x.  ( 1  /  R ) ) )
26118, 185, 185mulassd 9421 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  x.  ( 1  /  R
) )  x.  (
1  /  R ) )  =  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )
262260, 261eqtrd 2475 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  (
1  /  R ) )  =  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )
263262oveq1d 6118 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( t  /  R )  x.  ( 1  /  R
) )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
264255, 258, 2633eqtr2d 2481 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
265264mpteq2dva 4390 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
266184, 184mulcld 9418 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( 1  /  R )  x.  ( 1  /  R ) )  e.  CC )
267 cncfmptc 20499 . . . . . . 7  |-  ( ( ( ( 1  /  R )  x.  (
1  /  R ) )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( ( 1  /  R
)  x.  ( 1  /  R ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
268266, 11, 13, 267syl3anc 1218 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( 1  /  R )  x.  ( 1  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2691, 3, 194, 268cncfmpt2f 20502 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2701, 3, 269, 229cncfmpt2f 20502 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R ) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
271265, 270eqeltrd 2517 . . 3  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2721, 17, 254, 271cncfmpt2f 20502 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
2731, 3, 15, 272cncfmpt2f 20502 1  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618    \ cdif 3337    C_ wss 3340   class class class wbr 4304    e. cmpt 4362    |` cres 4854   -->wf 5426   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295   _ici 9296    + caddc 9297    x. cmul 9299   -oocmnf 9428   RR*cxr 9429    < clt 9430    <_ cle 9431    - cmin 9607   -ucneg 9608    / cdiv 10005   2c2 10383   RR+crp 11003   (,]cioc 11313   [,]cicc 11315   ^cexp 11877   sqrcsqr 12734   abscabs 12735   ↾t crest 14371   TopOpenctopn 14372  ℂfldccnfld 17830  TopOnctopon 18511    Cn ccn 18840    tX ctx 19145   -cn->ccncf 20464   logclog 22018  arcsincasin 22269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-fi 7673  df-sup 7703  df-oi 7736  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-ioo 11316  df-ioc 11317  df-ico 11318  df-icc 11319  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-shft 12568  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-limsup 12961  df-clim 12978  df-rlim 12979  df-sum 13176  df-ef 13365  df-sin 13367  df-cos 13368  df-tan 13369  df-pi 13370  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-rest 14373  df-topn 14374  df-0g 14392  df-gsum 14393  df-topgen 14394  df-pt 14395  df-prds 14398  df-xrs 14452  df-qtop 14457  df-imas 14458  df-xps 14460  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-submnd 15477  df-mulg 15560  df-cntz 15847  df-cmn 16291  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-fbas 17826  df-fg 17827  df-cnfld 17831  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-ntr 18636  df-cls 18637  df-nei 18714  df-lp 18752  df-perf 18753  df-cn 18843  df-cnp 18844  df-haus 18931  df-cmp 19002  df-tx 19147  df-hmeo 19340  df-fil 19431  df-fm 19523  df-flim 19524  df-flf 19525  df-xms 19907  df-ms 19908  df-tms 19909  df-cncf 20466  df-limc 21353  df-dv 21354  df-log 22020  df-cxp 22021  df-asin 22272
This theorem is referenced by:  areacirc  28501
  Copyright terms: Public domain W3C validator