Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Visualization version   Unicode version

Theorem areacirclem4 32099
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem4
StepHypRef Expression
1 rpcn 11333 . . . 4  |-  ( R  e.  RR+  ->  R  e.  CC )
21sqcld 12452 . . 3  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  CC )
3 rpre 11331 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
43renegcld 10067 . . . . 5  |-  ( R  e.  RR+  ->  -u R  e.  RR )
5 iccssre 11741 . . . . 5  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
64, 3, 5syl2anc 673 . . . 4  |-  ( R  e.  RR+  ->  ( -u R [,] R )  C_  RR )
7 ax-resscn 9614 . . . 4  |-  RR  C_  CC
86, 7syl6ss 3430 . . 3  |-  ( R  e.  RR+  ->  ( -u R [,] R )  C_  CC )
9 ssid 3437 . . . 4  |-  CC  C_  CC
109a1i 11 . . 3  |-  ( R  e.  RR+  ->  CC  C_  CC )
11 cncfmptc 22021 . . 3  |-  ( ( ( R ^ 2 )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( R ^ 2 ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
122, 8, 10, 11syl3anc 1292 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( R ^ 2 ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
13 eqid 2471 . . 3  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1413addcn 21975 . . . 4  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1514a1i 11 . . 3  |-  ( R  e.  RR+  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
168sselda 3418 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  CC )
171adantr 472 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  e.  CC )
18 rpne0 11340 . . . . . . . . 9  |-  ( R  e.  RR+  ->  R  =/=  0 )
1918adantr 472 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  =/=  0 )
2016, 17, 19divcld 10405 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  e.  CC )
21 asinval 23887 . . . . . . 7  |-  ( ( t  /  R )  e.  CC  ->  (arcsin `  ( t  /  R
) )  =  (
-u _i  x.  ( log `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
2220, 21syl 17 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
(arcsin `  ( t  /  R ) )  =  ( -u _i  x.  ( log `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
23 ax-icn 9616 . . . . . . . . . . . 12  |-  _i  e.  CC
2423a1i 11 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  _i  e.  CC )
2524, 20mulcld 9681 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  e.  CC )
26 1cnd 9677 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
1  e.  CC )
2720sqcld 12452 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  CC )
2826, 27subcld 10005 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  CC )
2928sqrtcld 13576 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  CC )
3025, 29addcld 9680 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  CC )
31 0lt1 10157 . . . . . . . . . . . . . . 15  |-  0  <  1
32 simp3 1032 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
t  =  0 )
3332oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( t  /  R
)  =  ( 0  /  R ) )
341, 18div0d 10404 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( 0  /  R )  =  0 )
35343ad2ant1 1051 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  /  R
)  =  0 )
3633, 35eqtrd 2505 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( t  /  R
)  =  0 )
3736oveq2d 6324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( _i  x.  (
t  /  R ) )  =  ( _i  x.  0 ) )
38 it0e0 10858 . . . . . . . . . . . . . . . . . . . 20  |-  ( _i  x.  0 )  =  0
3937, 38syl6eq 2521 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( _i  x.  (
t  /  R ) )  =  0 )
4036oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( t  /  R ) ^ 2 )  =  ( 0 ^ 2 ) )
4140oveq2d 6324 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  =  ( 1  -  ( 0 ^ 2 ) ) )
4241fveq2d 5883 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( sqr `  ( 1  -  (
0 ^ 2 ) ) ) )
43 sq0 12404 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0 ^ 2 )  =  0
4443oveq2i 6319 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  -  ( 0 ^ 2 ) )  =  ( 1  -  0 )
45 1m0e1 10742 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  -  0 )  =  1
4644, 45eqtri 2493 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  -  ( 0 ^ 2 ) )  =  1
4746fveq2i 5882 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sqr `  ( 1  -  (
0 ^ 2 ) ) )  =  ( sqr `  1 )
48 sqrt1 13412 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sqr `  1 )  =  1
4947, 48eqtri 2493 . . . . . . . . . . . . . . . . . . . 20  |-  ( sqr `  ( 1  -  (
0 ^ 2 ) ) )  =  1
5042, 49syl6eq 2521 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  1 )
5139, 50oveq12d 6326 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( 0  +  1 ) )
52 0p1e1 10743 . . . . . . . . . . . . . . . . . 18  |-  ( 0  +  1 )  =  1
5351, 52syl6eq 2521 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  1 )
5453breq2d 4407 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <->  0  <  1 ) )
55 0red 9662 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
0  e.  RR )
56 1red 9676 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
1  e.  RR )
5753, 56eqeltrd 2549 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )
5855, 57ltnled 9799 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 ) )
5954, 58bitr3d 263 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  1  <->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
6031, 59mpbii 216 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  ->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 )
61603expa 1231 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =  0 )  ->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 )
6261olcd 400 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =  0 )  ->  ( -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
63 inelr 10621 . . . . . . . . . . . . . 14  |-  -.  _i  e.  RR
6425, 29pncand 10006 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( _i  x.  ( t  /  R
) ) )
65643adant3 1050 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  -  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  =  ( _i  x.  (
t  /  R ) ) )
6665oveq1d 6323 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) )  =  ( ( _i  x.  ( t  /  R
) )  x.  ( R  /  t ) ) )
6723a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  _i  e.  CC )
68203adant3 1050 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
t  /  R )  e.  CC )
6913ad2ant1 1051 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  e.  CC )
70163adant3 1050 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  e.  CC )
71 simp3 1032 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  =/=  0 )
7269, 70, 71divcld 10405 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( R  /  t )  e.  CC )
7367, 68, 72mulassd 9684 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( _i  x.  (
t  /  R ) )  x.  ( R  /  t ) )  =  ( _i  x.  ( ( t  /  R )  x.  ( R  /  t ) ) ) )
7466, 73eqtrd 2505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) )  =  ( _i  x.  (
( t  /  R
)  x.  ( R  /  t ) ) ) )
75183ad2ant1 1051 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  =/=  0 )
7670, 69, 71, 75divcan6d 10424 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( t  /  R
)  x.  ( R  /  t ) )  =  1 )
7776oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
_i  x.  ( (
t  /  R )  x.  ( R  / 
t ) ) )  =  ( _i  x.  1 ) )
7867mulid1d 9678 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
_i  x.  1 )  =  _i )
7974, 77, 783eqtrrd 2510 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  _i  =  ( ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  x.  ( R  /  t ) ) )
8079adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  _i  =  ( ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) ) )
81 simpr 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR )
82 1red 9676 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
1  e.  RR )
836sselda 3418 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  RR )
843adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  e.  RR )
8583, 84, 19redivcld 10457 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  e.  RR )
8685resqcld 12480 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  RR )
8782, 86resubcld 10068 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  RR )
88 elicc2 11724 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
894, 3, 88syl2anc 673 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
90 1red 9676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  RR )
91 simpr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  RR )
923adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR )
9318adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  =/=  0 )
9491, 92, 93redivcld 10457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  /  R )  e.  RR )
9594resqcld 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  e.  RR )
9690, 95subge0d 10224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) )  <->  ( (
t  /  R ) ^ 2 )  <_ 
1 ) )
97 recn 9647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  t  e.  CC )
9897adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  CC )
991adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  CC )
10098, 99, 93sqdivd 12467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  =  ( ( t ^ 2 )  / 
( R ^ 2 ) ) )
101100breq1d 4405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <_  1  <->  ( (
t ^ 2 )  /  ( R ^
2 ) )  <_ 
1 ) )
102 resqcl 12380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
103102adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
1043resqcld 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR )
105 rpgt0 11336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( R  e.  RR+  ->  0  < 
R )
106 0red 9662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  e.  RR )
107 0le0 10721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  0  <_  0
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  <_ 
0 )
109 rpge0 11337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  <_  R )
110106, 3, 108, 109lt2sqd 12488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  ( 0 ^ 2 )  < 
( R ^ 2 ) ) )
11143a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  ( 0 ^ 2 )  =  0 )
112111breq1d 4405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( R  e.  RR+  ->  ( ( 0 ^ 2 )  <  ( R ^
2 )  <->  0  <  ( R ^ 2 ) ) )
113110, 112bitrd 261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  0  <  ( R ^ 2 ) ) )
114105, 113mpbid 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  e.  RR+  ->  0  < 
( R ^ 2 ) )
115104, 114elrpd 11361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR+ )
116115adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR+ )
117103, 90, 116ledivmuld 11414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <_  1  <->  ( t ^ 2 )  <_ 
( ( R ^
2 )  x.  1 ) ) )
118 absresq 13442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
119118eqcomd 2477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  (
t ^ 2 )  =  ( ( abs `  t ) ^ 2 ) )
1202mulid1d 9678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  x.  1 )  =  ( R ^ 2 ) )
121119, 120breqan12rd 4412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <_  ( ( R ^ 2 )  x.  1 )  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
12297abscld 13575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
123122adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
12497absge0d 13583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
125124adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
126109adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  R )
127123, 92, 125, 126le2sqd 12489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
12891, 92absled 13569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
129121, 127, 1283bitr2d 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <_  ( ( R ^ 2 )  x.  1 )  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
130117, 129bitrd 261 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <_  1  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
13196, 101, 1303bitrrd 288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  <->  0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
132131biimpd 212 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  ->  0  <_  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
133132exp4b 618 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <_  t  ->  ( t  <_  R  ->  0  <_  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
1341333impd 1247 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
13589, 134sylbid 223 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  ->  0  <_  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )
136135imp 436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
13787, 136resqrtcld 13556 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
1381373adant3 1050 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
139138adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
14081, 139resubcld 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR )
14133ad2ant1 1051 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  e.  RR )
142833adant3 1050 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  e.  RR )
143141, 142, 71redivcld 10457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( R  /  t )  e.  RR )
144143adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( R  / 
t )  e.  RR )
145140, 144remulcld 9689 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  x.  ( R  /  t ) )  e.  RR )
14680, 145eqeltrd 2549 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  _i  e.  RR )
147146ex 441 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  ->  _i  e.  RR ) )
1481473expa 1231 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  ->  _i  e.  RR ) )
14963, 148mtoi 183 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR )
150149orcd 399 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  ( -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
15162, 150pm2.61dane 2730 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
152 ianor 496 . . . . . . . . . . 11  |-  ( -.  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 )  <-> 
( -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
153151, 152sylibr 217 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  -.  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
154 mnfxr 11437 . . . . . . . . . . . 12  |- -oo  e.  RR*
155 0re 9661 . . . . . . . . . . . 12  |-  0  e.  RR
156 elioc2 11722 . . . . . . . . . . . 12  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( -oo (,] 0 )  <->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) ) )
157154, 155, 156mp2an 686 . . . . . . . . . . 11  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  <->  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  /\  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 ) )
158 3simpb 1028 . . . . . . . . . . 11  |-  ( ( ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  /\ -oo 
<  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  /\  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
159157, 158sylbi 200 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  ->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
160153, 159nsyl 125 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( -oo (,] 0 ) )
16130, 160eldifd 3401 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( CC 
\  ( -oo (,] 0 ) ) )
162 fvres 5893 . . . . . . . 8  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) )  ->  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )
163161, 162syl 17 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )
164163oveq2d 6324 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( -u _i  x.  (
( log  |`  ( CC 
\  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )  =  ( -u _i  x.  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
16522, 164eqtr4d 2508 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
(arcsin `  ( t  /  R ) )  =  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
166165mpteq2dva 4482 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  (arcsin `  ( t  /  R
) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) ) )
167 negicn 9896 . . . . . . 7  |-  -u _i  e.  CC
168167a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  -u _i  e.  CC )
169 cncfmptc 22021 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( t  e.  (
-u R [,] R
)  |->  -u _i )  e.  ( ( -u R [,] R ) -cn-> CC ) )
170168, 8, 10, 169syl3anc 1292 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  -u _i )  e.  ( ( -u R [,] R )
-cn-> CC ) )
17113cnfldtopon 21881 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
172171a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
173 resttopon 20254 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( -u R [,] R ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
174172, 8, 173syl2anc 673 . . . . . . 7  |-  ( R  e.  RR+  ->  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
175 eqid 2471 . . . . . . . . . 10  |-  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
176161, 175fmptd 6061 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) )
177 difssd 3550 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( CC 
\  ( -oo (,] 0 ) )  C_  CC )
17816, 17, 19divrec2d 10409 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  =  ( ( 1  /  R )  x.  t ) )
179178oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  =  ( _i  x.  ( ( 1  /  R )  x.  t ) ) )
1801, 18reccld 10398 . . . . . . . . . . . . . . . 16  |-  ( R  e.  RR+  ->  ( 1  /  R )  e.  CC )
181180adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  /  R
)  e.  CC )
18224, 181, 16mulassd 9684 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( 1  /  R
) )  x.  t
)  =  ( _i  x.  ( ( 1  /  R )  x.  t ) ) )
183179, 182eqtr4d 2508 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  =  ( ( _i  x.  ( 1  /  R ) )  x.  t ) )
184183mpteq2dva 4482 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( t  /  R ) ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( 1  /  R ) )  x.  t ) ) )
18523a1i 11 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  _i  e.  CC )
186185, 180mulcld 9681 . . . . . . . . . . . . . 14  |-  ( R  e.  RR+  ->  ( _i  x.  ( 1  /  R ) )  e.  CC )
187 cncfmptc 22021 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  (
1  /  R ) )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( _i  x.  ( 1  /  R ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
188186, 8, 10, 187syl3anc 1292 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( 1  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
189 cncfmptid 22022 . . . . . . . . . . . . . 14  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( t  e.  (
-u R [,] R
)  |->  t )  e.  ( ( -u R [,] R ) -cn-> CC ) )
1908, 10, 189syl2anc 673 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  t )  e.  ( ( -u R [,] R ) -cn-> CC ) )
191188, 190mulcncf 22476 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( 1  /  R ) )  x.  t ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
192184, 191eqeltrd 2549 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( t  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
19317, 29mulcld 9681 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
194193, 17, 19divrec2d 10409 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  /  R )  =  ( ( 1  /  R )  x.  ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
19529, 17, 19divcan3d 10410 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  /  R )  =  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
196104adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  e.  RR )
1973sqge0d 12481 . . . . . . . . . . . . . . . . . 18  |-  ( R  e.  RR+  ->  0  <_ 
( R ^ 2 ) )
198197adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  ( R ^ 2 ) )
199196, 198, 87, 136sqrtmuld 13563 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
2002adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  e.  CC )
201200, 26, 27subdid 10095 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( ( R ^ 2 )  x.  1 )  -  ( ( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) ) )
202200mulid1d 9678 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  1 )  =  ( R ^ 2 ) )
20316, 17, 19sqdivd 12467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  =  ( ( t ^ 2 )  /  ( R ^
2 ) ) )
204203oveq2d 6324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( ( R ^ 2 )  x.  ( ( t ^ 2 )  / 
( R ^ 2 ) ) ) )
20516sqcld 12452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t ^ 2 )  e.  CC )
206 sqne0 12379 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  CC  ->  (
( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
2071, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
20818, 207mpbird 240 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =/=  0 )
209208adantr 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  =/=  0 )
210205, 200, 209divcan2d 10407 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t ^ 2 )  /  ( R ^ 2 ) ) )  =  ( t ^ 2 ) )
211204, 210eqtrd 2505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( t ^ 2 ) )
212202, 211oveq12d 6326 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( R ^ 2 )  x.  1 )  -  (
( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
213201, 212eqtrd 2505 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
214213fveq2d 5883 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
215109adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  R )
21684, 215sqrtsqd 13558 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  ( R ^ 2 ) )  =  R )
217216oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )
218199, 214, 2173eqtr3rd 2514 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
219218oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( 1  /  R )  x.  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
220194, 195, 2193eqtr3d 2513 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
221220mpteq2dva 4482 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
222 cncfmptc 22021 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  R
)  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( 1  /  R ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
223180, 8, 10, 222syl3anc 1292 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( 1  /  R ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
224 areacirclem2 32097 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2253, 109, 224syl2anc 673 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
226223, 225mulcncf 22476 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
227221, 226eqeltrd 2549 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
22813, 15, 192, 227cncfmpt2f 22024 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
229 cncffvrn 22008 . . . . . . . . . 10  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  (
t  e.  ( -u R [,] R )  |->  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )  ->  (
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) )  <-> 
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) ) )
230177, 228, 229syl2anc 673 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC  \  ( -oo (,] 0 ) ) )  <-> 
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) ) )
231176, 230mpbird 240 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) ) )
232 eqid 2471 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  =  ( ( TopOpen ` fld )t  ( -u R [,] R ) )
233 eqid 2471 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) )  =  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) )
23413, 232, 233cncfcn 22019 . . . . . . . . 9  |-  ( ( ( -u R [,] R )  C_  CC  /\  ( CC  \  ( -oo (,] 0 ) ) 
C_  CC )  -> 
( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) ) ) )
2358, 177, 234syl2anc 673 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( (
-u R [,] R
) -cn-> ( CC  \ 
( -oo (,] 0 ) ) )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) ) ) )
236231, 235eleqtrd 2551 . . . . . . 7  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) ) ) )
237 eqid 2471 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
238237logcn 23671 . . . . . . . . 9  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )
239 difss 3549 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  C_  CC
240 eqid 2471 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  CC )  =  ( ( TopOpen ` fld )t  CC )
24113, 233, 240cncfcn 22019 . . . . . . . . . 10  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
242239, 9, 241mp2an 686 . . . . . . . . 9  |-  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) )
243238, 242eleqtri 2547 . . . . . . . 8  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) )
244243a1i 11 . . . . . . 7  |-  ( R  e.  RR+  ->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
245174, 236, 244cnmpt11f 20756 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) `  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  CC ) ) )
24613, 232, 240cncfcn 22019 . . . . . . 7  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( ( -u R [,] R ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
2478, 10, 246syl2anc 673 . . . . . 6  |-  ( R  e.  RR+  ->  ( (
-u R [,] R
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
248245, 247eleqtrrd 2552 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) `  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
249170, 248mulcncf 22476 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
250166, 249eqeltrd 2549 . . 3  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  (arcsin `  ( t  /  R
) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
251220oveq2d 6324 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( ( 1  /  R )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
252200, 205subcld 10005 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  -  (
t ^ 2 ) )  e.  CC )
253252sqrtcld 13576 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  CC )
25420, 181, 253mulassd 9684 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( t  /  R )  x.  ( 1  /  R
) )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( ( 1  /  R )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
25516, 17, 19divrecd 10408 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  =  ( t  x.  ( 1  /  R ) ) )
256255oveq1d 6323 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  (
1  /  R ) )  =  ( ( t  x.  ( 1  /  R ) )  x.  ( 1  /  R ) ) )
25716, 181, 181mulassd 9684 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  x.  ( 1  /  R
) )  x.  (
1  /  R ) )  =  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )
258256, 257eqtrd 2505 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  (
1  /  R ) )  =  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )
259258oveq1d 6323 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( t  /  R )  x.  ( 1  /  R
) )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
260251, 254, 2593eqtr2d 2511 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
261260mpteq2dva 4482 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
262180, 180mulcld 9681 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( 1  /  R )  x.  ( 1  /  R ) )  e.  CC )
263 cncfmptc 22021 . . . . . . 7  |-  ( ( ( ( 1  /  R )  x.  (
1  /  R ) )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( ( 1  /  R
)  x.  ( 1  /  R ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
264262, 8, 10, 263syl3anc 1292 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( 1  /  R )  x.  ( 1  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
265190, 264mulcncf 22476 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
266265, 225mulcncf 22476 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R ) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
267261, 266eqeltrd 2549 . . 3  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
26813, 15, 250, 267cncfmpt2f 22024 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
26912, 268mulcncf 22476 1  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641    \ cdif 3387    C_ wss 3390   class class class wbr 4395    |-> cmpt 4454    |` cres 4841   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558   _ici 9559    + caddc 9560    x. cmul 9562   -oocmnf 9691   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881    / cdiv 10291   2c2 10681   RR+crp 11325   (,]cioc 11661   [,]cicc 11663   ^cexp 12310   sqrcsqrt 13373   abscabs 13374   ↾t crest 15397   TopOpenctopn 15398  ℂfldccnfld 19047  TopOnctopon 19995    Cn ccn 20317    tX ctx 20652   -cn->ccncf 21986   logclog 23583  arcsincasin 23867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-tan 14202  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-cxp 23586  df-asin 23870
This theorem is referenced by:  areacirc  32101
  Copyright terms: Public domain W3C validator