Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Unicode version

Theorem areacirclem4 31738
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem4
StepHypRef Expression
1 rpcn 11310 . . . 4  |-  ( R  e.  RR+  ->  R  e.  CC )
21sqcld 12411 . . 3  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  CC )
3 rpre 11308 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
43renegcld 10045 . . . . 5  |-  ( R  e.  RR+  ->  -u R  e.  RR )
5 iccssre 11716 . . . . 5  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
64, 3, 5syl2anc 665 . . . 4  |-  ( R  e.  RR+  ->  ( -u R [,] R )  C_  RR )
7 ax-resscn 9595 . . . 4  |-  RR  C_  CC
86, 7syl6ss 3482 . . 3  |-  ( R  e.  RR+  ->  ( -u R [,] R )  C_  CC )
9 ssid 3489 . . . 4  |-  CC  C_  CC
109a1i 11 . . 3  |-  ( R  e.  RR+  ->  CC  C_  CC )
11 cncfmptc 21839 . . 3  |-  ( ( ( R ^ 2 )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( R ^ 2 ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
122, 8, 10, 11syl3anc 1264 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( R ^ 2 ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
13 eqid 2429 . . 3  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1413addcn 21793 . . . 4  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1514a1i 11 . . 3  |-  ( R  e.  RR+  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
168sselda 3470 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  CC )
171adantr 466 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  e.  CC )
18 rpne0 11317 . . . . . . . . 9  |-  ( R  e.  RR+  ->  R  =/=  0 )
1918adantr 466 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  =/=  0 )
2016, 17, 19divcld 10382 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  e.  CC )
21 asinval 23673 . . . . . . 7  |-  ( ( t  /  R )  e.  CC  ->  (arcsin `  ( t  /  R
) )  =  (
-u _i  x.  ( log `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
2220, 21syl 17 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
(arcsin `  ( t  /  R ) )  =  ( -u _i  x.  ( log `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
23 ax-icn 9597 . . . . . . . . . . . 12  |-  _i  e.  CC
2423a1i 11 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  _i  e.  CC )
2524, 20mulcld 9662 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  e.  CC )
26 1cnd 9658 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
1  e.  CC )
2720sqcld 12411 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  CC )
2826, 27subcld 9985 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  CC )
2928sqrtcld 13477 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  CC )
3025, 29addcld 9661 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  CC )
31 0lt1 10135 . . . . . . . . . . . . . . 15  |-  0  <  1
32 simp3 1007 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
t  =  0 )
3332oveq1d 6320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( t  /  R
)  =  ( 0  /  R ) )
341, 18div0d 10381 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( 0  /  R )  =  0 )
35343ad2ant1 1026 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  /  R
)  =  0 )
3633, 35eqtrd 2470 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( t  /  R
)  =  0 )
3736oveq2d 6321 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( _i  x.  (
t  /  R ) )  =  ( _i  x.  0 ) )
38 it0e0 10835 . . . . . . . . . . . . . . . . . . . 20  |-  ( _i  x.  0 )  =  0
3937, 38syl6eq 2486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( _i  x.  (
t  /  R ) )  =  0 )
4036oveq1d 6320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( t  /  R ) ^ 2 )  =  ( 0 ^ 2 ) )
4140oveq2d 6321 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  =  ( 1  -  ( 0 ^ 2 ) ) )
4241fveq2d 5885 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( sqr `  ( 1  -  (
0 ^ 2 ) ) ) )
43 sq0 12363 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0 ^ 2 )  =  0
4443oveq2i 6316 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  -  ( 0 ^ 2 ) )  =  ( 1  -  0 )
45 1m0e1 10720 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  -  0 )  =  1
4644, 45eqtri 2458 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  -  ( 0 ^ 2 ) )  =  1
4746fveq2i 5884 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sqr `  ( 1  -  (
0 ^ 2 ) ) )  =  ( sqr `  1 )
48 sqrt1 13314 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sqr `  1 )  =  1
4947, 48eqtri 2458 . . . . . . . . . . . . . . . . . . . 20  |-  ( sqr `  ( 1  -  (
0 ^ 2 ) ) )  =  1
5042, 49syl6eq 2486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  1 )
5139, 50oveq12d 6323 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( 0  +  1 ) )
52 0p1e1 10721 . . . . . . . . . . . . . . . . . 18  |-  ( 0  +  1 )  =  1
5351, 52syl6eq 2486 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  1 )
5453breq2d 4438 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <->  0  <  1 ) )
55 0red 9643 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
0  e.  RR )
56 1red 9657 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
1  e.  RR )
5753, 56eqeltrd 2517 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )
5855, 57ltnled 9781 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 ) )
5954, 58bitr3d 258 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  -> 
( 0  <  1  <->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
6031, 59mpbii 214 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =  0 )  ->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 )
61603expa 1205 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =  0 )  ->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 )
6261olcd 394 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =  0 )  ->  ( -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
63 inelr 10599 . . . . . . . . . . . . . 14  |-  -.  _i  e.  RR
6425, 29pncand 9986 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( _i  x.  ( t  /  R
) ) )
65643adant3 1025 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  -  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  =  ( _i  x.  (
t  /  R ) ) )
6665oveq1d 6320 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) )  =  ( ( _i  x.  ( t  /  R
) )  x.  ( R  /  t ) ) )
6723a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  _i  e.  CC )
68203adant3 1025 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
t  /  R )  e.  CC )
6913ad2ant1 1026 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  e.  CC )
70163adant3 1025 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  e.  CC )
71 simp3 1007 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  =/=  0 )
7269, 70, 71divcld 10382 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( R  /  t )  e.  CC )
7367, 68, 72mulassd 9665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( _i  x.  (
t  /  R ) )  x.  ( R  /  t ) )  =  ( _i  x.  ( ( t  /  R )  x.  ( R  /  t ) ) ) )
7466, 73eqtrd 2470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) )  =  ( _i  x.  (
( t  /  R
)  x.  ( R  /  t ) ) ) )
75183ad2ant1 1026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  =/=  0 )
7670, 69, 71, 75divcan6d 10401 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( t  /  R
)  x.  ( R  /  t ) )  =  1 )
7776oveq2d 6321 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
_i  x.  ( (
t  /  R )  x.  ( R  / 
t ) ) )  =  ( _i  x.  1 ) )
7867mulid1d 9659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
_i  x.  1 )  =  _i )
7974, 77, 783eqtrrd 2475 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  _i  =  ( ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  x.  ( R  /  t ) ) )
8079adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  _i  =  ( ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( R  / 
t ) ) )
81 simpr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR )
82 1red 9657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
1  e.  RR )
836sselda 3470 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  RR )
843adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  R  e.  RR )
8583, 84, 19redivcld 10434 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  e.  RR )
8685resqcld 12439 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  RR )
8782, 86resubcld 10046 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  RR )
88 elicc2 11699 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
894, 3, 88syl2anc 665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
90 1red 9657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  RR )
91 simpr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  RR )
923adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR )
9318adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  =/=  0 )
9491, 92, 93redivcld 10434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  /  R )  e.  RR )
9594resqcld 12439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  e.  RR )
9690, 95subge0d 10202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) )  <->  ( (
t  /  R ) ^ 2 )  <_ 
1 ) )
97 recn 9628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  t  e.  CC )
9897adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  CC )
991adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  CC )
10098, 99, 93sqdivd 12426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  =  ( ( t ^ 2 )  / 
( R ^ 2 ) ) )
101100breq1d 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <_  1  <->  ( (
t ^ 2 )  /  ( R ^
2 ) )  <_ 
1 ) )
102 resqcl 12339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
103102adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
1043resqcld 12439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR )
105 rpgt0 11313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( R  e.  RR+  ->  0  < 
R )
106 0red 9643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  e.  RR )
107 0le0 10699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  0  <_  0
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  <_ 
0 )
109 rpge0 11314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  0  <_  R )
110106, 3, 108, 109lt2sqd 12447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  ( 0 ^ 2 )  < 
( R ^ 2 ) ) )
11143a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( R  e.  RR+  ->  ( 0 ^ 2 )  =  0 )
112111breq1d 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( R  e.  RR+  ->  ( ( 0 ^ 2 )  <  ( R ^
2 )  <->  0  <  ( R ^ 2 ) ) )
113110, 112bitrd 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  0  <  ( R ^ 2 ) ) )
114105, 113mpbid 213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  e.  RR+  ->  0  < 
( R ^ 2 ) )
115104, 114elrpd 11338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR+ )
116115adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR+ )
117103, 90, 116ledivmuld 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <_  1  <->  ( t ^ 2 )  <_ 
( ( R ^
2 )  x.  1 ) ) )
118 absresq 13344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
119118eqcomd 2437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  e.  RR  ->  (
t ^ 2 )  =  ( ( abs `  t ) ^ 2 ) )
1202mulid1d 9659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  x.  1 )  =  ( R ^ 2 ) )
121119, 120breqan12rd 4442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <_  ( ( R ^ 2 )  x.  1 )  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
12297abscld 13476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
123122adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
12497absge0d 13484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
125124adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
126109adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  R )
127123, 92, 125, 126le2sqd 12448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
12891, 92absled 13471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
129121, 127, 1283bitr2d 284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <_  ( ( R ^ 2 )  x.  1 )  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
130117, 129bitrd 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <_  1  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
13196, 101, 1303bitrrd 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  <->  0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
132131biimpd 210 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  ->  0  <_  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
133132exp4b 610 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <_  t  ->  ( t  <_  R  ->  0  <_  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
1341333impd 1219 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
13589, 134sylbid 218 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  ->  0  <_  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )
136135imp 430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
13787, 136resqrtcld 13458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
1381373adant3 1025 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
139138adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  RR )
14081, 139resubcld 10046 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR )
14133ad2ant1 1026 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  R  e.  RR )
142833adant3 1025 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  t  e.  RR )
143141, 142, 71redivcld 10434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  ( R  /  t )  e.  RR )
144143adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( R  / 
t )  e.  RR )
145140, 144remulcld 9670 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  ( ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  -  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  x.  ( R  /  t ) )  e.  RR )
14680, 145eqeltrd 2517 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR )  ->  _i  e.  RR )
147146ex 435 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R )  /\  t  =/=  0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  ->  _i  e.  RR ) )
1481473expa 1205 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  ->  _i  e.  RR ) )
14963, 148mtoi 181 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  -.  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR )
150149orcd 393 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  /\  t  =/=  0
)  ->  ( -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
15162, 150pm2.61dane 2749 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
152 ianor 490 . . . . . . . . . . 11  |-  ( -.  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 )  <-> 
( -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  \/  -.  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
153151, 152sylibr 215 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  -.  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
154 mnfxr 11414 . . . . . . . . . . . 12  |- -oo  e.  RR*
155 0re 9642 . . . . . . . . . . . 12  |-  0  e.  RR
156 elioc2 11697 . . . . . . . . . . . 12  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( -oo (,] 0 )  <->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) ) )
157154, 155, 156mp2an 676 . . . . . . . . . . 11  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  <->  ( ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  RR  /\ -oo  <  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  /\  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 ) )
158 3simpb 1003 . . . . . . . . . . 11  |-  ( ( ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  /\ -oo 
<  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  /\  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  <_ 
0 )  ->  (
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  <_  0 ) )
159157, 158sylbi 198 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( -oo (,] 0
)  ->  ( (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  RR  /\  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  <_  0
) )
160153, 159nsyl 124 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  ->  -.  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( -oo (,] 0 ) )
16130, 160eldifd 3453 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  e.  ( CC 
\  ( -oo (,] 0 ) ) )
162 fvres 5895 . . . . . . . 8  |-  ( ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( CC  \  ( -oo (,] 0 ) )  ->  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )
163161, 162syl 17 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )
164163oveq2d 6321 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( -u _i  x.  (
( log  |`  ( CC 
\  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )  =  ( -u _i  x.  ( log `  (
( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
16522, 164eqtr4d 2473 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
(arcsin `  ( t  /  R ) )  =  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )
166165mpteq2dva 4512 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  (arcsin `  ( t  /  R
) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `
 ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) ) )
167 negicn 9875 . . . . . . 7  |-  -u _i  e.  CC
168167a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  -u _i  e.  CC )
169 cncfmptc 21839 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( t  e.  (
-u R [,] R
)  |->  -u _i )  e.  ( ( -u R [,] R ) -cn-> CC ) )
170168, 8, 10, 169syl3anc 1264 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  -u _i )  e.  ( ( -u R [,] R )
-cn-> CC ) )
17113cnfldtopon 21714 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
172171a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
173 resttopon 20108 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( -u R [,] R ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
174172, 8, 173syl2anc 665 . . . . . . 7  |-  ( R  e.  RR+  ->  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
175 eqid 2429 . . . . . . . . . 10  |-  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
176161, 175fmptd 6061 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) )
177 difssd 3599 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( CC 
\  ( -oo (,] 0 ) )  C_  CC )
17816, 17, 19divrec2d 10386 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  =  ( ( 1  /  R )  x.  t ) )
179178oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  =  ( _i  x.  ( ( 1  /  R )  x.  t ) ) )
1801, 18reccld 10375 . . . . . . . . . . . . . . . 16  |-  ( R  e.  RR+  ->  ( 1  /  R )  e.  CC )
181180adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( 1  /  R
)  e.  CC )
18224, 181, 16mulassd 9665 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( _i  x.  ( 1  /  R
) )  x.  t
)  =  ( _i  x.  ( ( 1  /  R )  x.  t ) ) )
183179, 182eqtr4d 2473 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( _i  x.  (
t  /  R ) )  =  ( ( _i  x.  ( 1  /  R ) )  x.  t ) )
184183mpteq2dva 4512 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( t  /  R ) ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( 1  /  R ) )  x.  t ) ) )
18523a1i 11 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  _i  e.  CC )
186185, 180mulcld 9662 . . . . . . . . . . . . . 14  |-  ( R  e.  RR+  ->  ( _i  x.  ( 1  /  R ) )  e.  CC )
187 cncfmptc 21839 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  (
1  /  R ) )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( _i  x.  ( 1  /  R ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
188186, 8, 10, 187syl3anc 1264 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( 1  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
189 cncfmptid 21840 . . . . . . . . . . . . . 14  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( t  e.  (
-u R [,] R
)  |->  t )  e.  ( ( -u R [,] R ) -cn-> CC ) )
1908, 10, 189syl2anc 665 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  t )  e.  ( ( -u R [,] R ) -cn-> CC ) )
191188, 190mulcncf 22279 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( 1  /  R ) )  x.  t ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
192184, 191eqeltrd 2517 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( _i  x.  ( t  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
19317, 29mulcld 9662 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
194193, 17, 19divrec2d 10386 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  /  R )  =  ( ( 1  /  R )  x.  ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
19529, 17, 19divcan3d 10387 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  /  R )  =  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
196104adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  e.  RR )
1973sqge0d 12440 . . . . . . . . . . . . . . . . . 18  |-  ( R  e.  RR+  ->  0  <_ 
( R ^ 2 ) )
198197adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  ( R ^ 2 ) )
199196, 198, 87, 136sqrtmuld 13465 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
2002adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  e.  CC )
201200, 26, 27subdid 10073 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( ( R ^ 2 )  x.  1 )  -  ( ( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) ) )
202200mulid1d 9659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  1 )  =  ( R ^ 2 ) )
20316, 17, 19sqdivd 12426 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R ) ^ 2 )  =  ( ( t ^ 2 )  /  ( R ^
2 ) ) )
204203oveq2d 6321 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( ( R ^ 2 )  x.  ( ( t ^ 2 )  / 
( R ^ 2 ) ) ) )
20516sqcld 12411 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t ^ 2 )  e.  CC )
206 sqne0 12338 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  CC  ->  (
( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
2071, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
20818, 207mpbird 235 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =/=  0 )
209208adantr 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R ^ 2 )  =/=  0 )
210205, 200, 209divcan2d 10384 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t ^ 2 )  /  ( R ^ 2 ) ) )  =  ( t ^ 2 ) )
211204, 210eqtrd 2470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( t ^ 2 ) )
212202, 211oveq12d 6323 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( R ^ 2 )  x.  1 )  -  (
( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
213201, 212eqtrd 2470 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
214213fveq2d 5885 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
215109adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
0  <_  R )
21684, 215sqrtsqd 13460 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  ( R ^ 2 ) )  =  R )
217216oveq1d 6320 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )
218199, 214, 2173eqtr3rd 2479 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
219218oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( 1  /  R )  x.  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
220194, 195, 2193eqtr3d 2478 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
221220mpteq2dva 4512 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
222 cncfmptc 21839 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  R
)  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( 1  /  R ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
223180, 8, 10, 222syl3anc 1264 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( 1  /  R ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
224 areacirclem2 31736 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
2253, 109, 224syl2anc 665 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
226223, 225mulcncf 22279 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( 1  /  R )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
227221, 226eqeltrd 2517 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
22813, 15, 192, 227cncfmpt2f 21842 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
229 cncffvrn 21826 . . . . . . . . . 10  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  (
t  e.  ( -u R [,] R )  |->  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )  ->  (
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) )  <-> 
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) ) )
230177, 228, 229syl2anc 665 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  (
t  /  R ) )  +  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC  \  ( -oo (,] 0 ) ) )  <-> 
( t  e.  (
-u R [,] R
)  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) : ( -u R [,] R ) --> ( CC 
\  ( -oo (,] 0 ) ) ) )
231176, 230mpbird 235 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) ) )
232 eqid 2429 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  =  ( ( TopOpen ` fld )t  ( -u R [,] R ) )
233 eqid 2429 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) )  =  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) )
23413, 232, 233cncfcn 21837 . . . . . . . . 9  |-  ( ( ( -u R [,] R )  C_  CC  /\  ( CC  \  ( -oo (,] 0 ) ) 
C_  CC )  -> 
( ( -u R [,] R ) -cn-> ( CC 
\  ( -oo (,] 0 ) ) )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) ) ) )
2358, 177, 234syl2anc 665 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( (
-u R [,] R
) -cn-> ( CC  \ 
( -oo (,] 0 ) ) )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) ) ) )
236231, 235eleqtrd 2519 . . . . . . 7  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  ( CC  \  ( -oo (,] 0 ) ) ) ) )
237 eqid 2429 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
238237logcn 23457 . . . . . . . . 9  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )
239 difss 3598 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  C_  CC
240 eqid 2429 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  CC )  =  ( ( TopOpen ` fld )t  CC )
24113, 233, 240cncfcn 21837 . . . . . . . . . 10  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
242239, 9, 241mp2an 676 . . . . . . . . 9  |-  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) )
243238, 242eleqtri 2515 . . . . . . . 8  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) )
244243a1i 11 . . . . . . 7  |-  ( R  e.  RR+  ->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( CC  \ 
( -oo (,] 0 ) ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
245174, 236, 244cnmpt11f 20610 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) `  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  CC ) ) )
24613, 232, 240cncfcn 21837 . . . . . . 7  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( ( -u R [,] R ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
2478, 10, 246syl2anc 665 . . . . . 6  |-  ( R  e.  RR+  ->  ( (
-u R [,] R
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
248245, 247eleqtrrd 2520 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) `  ( ( _i  x.  ( t  /  R
) )  +  ( sqr `  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
249170, 248mulcncf 22279 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( -u _i  x.  ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) `  ( ( _i  x.  ( t  /  R ) )  +  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
250166, 249eqeltrd 2517 . . 3  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  (arcsin `  ( t  /  R
) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
251220oveq2d 6321 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( ( 1  /  R )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
252200, 205subcld 9985 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( R ^
2 )  -  (
t ^ 2 ) )  e.  CC )
253252sqrtcld 13477 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  CC )
25420, 181, 253mulassd 9665 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( t  /  R )  x.  ( 1  /  R
) )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( ( 1  /  R )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
25516, 17, 19divrecd 10385 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( t  /  R
)  =  ( t  x.  ( 1  /  R ) ) )
256255oveq1d 6320 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  (
1  /  R ) )  =  ( ( t  x.  ( 1  /  R ) )  x.  ( 1  /  R ) ) )
25716, 181, 181mulassd 9665 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  x.  ( 1  /  R
) )  x.  (
1  /  R ) )  =  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )
258256, 257eqtrd 2470 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  (
1  /  R ) )  =  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )
259258oveq1d 6320 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( ( t  /  R )  x.  ( 1  /  R
) )  x.  ( sqr `  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
260251, 254, 2593eqtr2d 2476 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R [,] R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
261260mpteq2dva 4512 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  =  ( t  e.  (
-u R [,] R
)  |->  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
262180, 180mulcld 9662 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( 1  /  R )  x.  ( 1  /  R ) )  e.  CC )
263 cncfmptc 21839 . . . . . . 7  |-  ( ( ( ( 1  /  R )  x.  (
1  /  R ) )  e.  CC  /\  ( -u R [,] R
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( -u R [,] R )  |->  ( ( 1  /  R
)  x.  ( 1  /  R ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
264262, 8, 10, 263syl3anc 1264 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( 1  /  R )  x.  ( 1  /  R ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
265190, 264mulcncf 22279 . . . . 5  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R
) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
266265, 225mulcncf 22279 . . . 4  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  x.  ( ( 1  /  R )  x.  ( 1  /  R ) ) )  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
267261, 266eqeltrd 2517 . . 3  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
26813, 15, 250, 267cncfmpt2f 21842 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) )  e.  ( (
-u R [,] R
) -cn-> CC ) )
26912, 268mulcncf 22279 1  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625    \ cdif 3439    C_ wss 3442   class class class wbr 4426    |-> cmpt 4484    |` cres 4856   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539   _ici 9540    + caddc 9541    x. cmul 9543   -oocmnf 9672   RR*cxr 9673    < clt 9674    <_ cle 9675    - cmin 9859   -ucneg 9860    / cdiv 10268   2c2 10659   RR+crp 11302   (,]cioc 11636   [,]cicc 11638   ^cexp 12269   sqrcsqrt 13275   abscabs 13276   ↾t crest 15278   TopOpenctopn 15279  ℂfldccnfld 18905  TopOnctopon 19849    Cn ccn 20171    tX ctx 20506   -cn->ccncf 21804   logclog 23369  arcsincasin 23653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-tan 14103  df-pi 14104  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-cmp 20333  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371  df-cxp 23372  df-asin 23656
This theorem is referenced by:  areacirc  31740
  Copyright terms: Public domain W3C validator