Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem2 Unicode version

Theorem areacirclem2 26181
Description: Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017.)
Assertion
Ref Expression
areacirclem2  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem2
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9037 . . . . 5  |-  RR  e.  _V
21prid1 3872 . . . 4  |-  RR  e.  { RR ,  CC }
32a1i 11 . . 3  |-  ( R  e.  RR+  ->  RR  e.  { RR ,  CC }
)
4 elioore 10902 . . . . . . . 8  |-  ( t  e.  ( -u R (,) R )  ->  t  e.  RR )
54recnd 9070 . . . . . . 7  |-  ( t  e.  ( -u R (,) R )  ->  t  e.  CC )
65adantl 453 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
t  e.  CC )
7 rpcn 10576 . . . . . . 7  |-  ( R  e.  RR+  ->  R  e.  CC )
87adantr 452 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  e.  CC )
9 rpne0 10583 . . . . . . 7  |-  ( R  e.  RR+  ->  R  =/=  0 )
109adantr 452 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  =/=  0 )
116, 8, 10divcld 9746 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  CC )
12 asincl 20666 . . . . 5  |-  ( ( t  /  R )  e.  CC  ->  (arcsin `  ( t  /  R
) )  e.  CC )
1311, 12syl 16 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
(arcsin `  ( t  /  R ) )  e.  CC )
14 ax-1cn 9004 . . . . . . . 8  |-  1  e.  CC
1514a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
1  e.  CC )
1611sqcld 11476 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  CC )
1715, 16subcld 9367 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  CC )
1817sqrcld 12194 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  CC )
1911, 18mulcld 9064 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
2013, 19addcld 9063 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( (arcsin `  (
t  /  R ) )  +  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  CC )
21 ovex 6065 . . . 4  |-  ( ( 2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  x.  ( 1  /  R
) )  e.  _V
2221a1i 11 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) )  e.  _V )
23 rpre 10574 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  R  e.  RR )
2423renegcld 9420 . . . . . . . . 9  |-  ( R  e.  RR+  ->  -u R  e.  RR )
2524rexrd 9090 . . . . . . . 8  |-  ( R  e.  RR+  ->  -u R  e.  RR* )
26 rpxr 10575 . . . . . . . 8  |-  ( R  e.  RR+  ->  R  e. 
RR* )
27 elioo2 10913 . . . . . . . 8  |-  ( (
-u R  e.  RR*  /\  R  e.  RR* )  ->  ( t  e.  (
-u R (,) R
)  <->  ( t  e.  RR  /\  -u R  <  t  /\  t  < 
R ) ) )
2825, 26, 27syl2anc 643 . . . . . . 7  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  <->  ( t  e.  RR  /\  -u R  <  t  /\  t  < 
R ) ) )
29 simpr 448 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  RR )
3023adantr 452 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR )
319adantr 452 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  =/=  0 )
3229, 30, 31redivcld 9798 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  /  R )  e.  RR )
3332a1d 23 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( t  /  R )  e.  RR ) )
347mulm1d 9441 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  ( -u
1  x.  R )  =  -u R )
3534adantr 452 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u 1  x.  R )  =  -u R )
3635breq1d 4182 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u 1  x.  R
)  <  t  <->  -u R  < 
t ) )
37 1re 9046 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
3837renegcli 9318 . . . . . . . . . . . . . . 15  |-  -u 1  e.  RR
3938a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  -u 1  e.  RR )
40 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR+ )
4139, 29, 40ltmuldivd 10647 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u 1  x.  R
)  <  t  <->  -u 1  < 
( t  /  R
) ) )
4236, 41bitr3d 247 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u R  <  t  <->  -u 1  < 
( t  /  R
) ) )
4342biimpd 199 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u R  <  t  ->  -u 1  <  ( t  /  R ) ) )
4443adantrd 455 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  -u 1  <  (
t  /  R ) ) )
4537a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  RR )
4629, 45, 40ltdivmuld 10651 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
)  <  1  <->  t  <  ( R  x.  1 ) ) )
477mulid1d 9061 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  ( R  x.  1 )  =  R )
4847adantr 452 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R  x.  1 )  =  R )
4948breq2d 4184 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  ( R  x.  1 )  <->  t  <  R ) )
5046, 49bitr2d 246 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  R  <->  ( t  /  R )  <  1
) )
5150biimpd 199 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  R  ->  ( t  /  R )  <  1 ) )
5251adantld 454 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( t  /  R )  <  1
) )
5333, 44, 523jcad 1135 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) ) )
5453exp4b 591 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <  t  -> 
( t  <  R  ->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) ) ) )
55543impd 1167 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <  t  /\  t  <  R )  -> 
( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) )
5628, 55sylbid 207 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  ->  (
( t  /  R
)  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) )
5756imp 419 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) )
5838rexri 9093 . . . . . 6  |-  -u 1  e.  RR*
5937rexri 9093 . . . . . 6  |-  1  e.  RR*
60 elioo2 10913 . . . . . 6  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( ( t  /  R )  e.  (
-u 1 (,) 1
)  <->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) ) )
6158, 59, 60mp2an 654 . . . . 5  |-  ( ( t  /  R )  e.  ( -u 1 (,) 1 )  <->  ( (
t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) )
6257, 61sylibr 204 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  ( -u
1 (,) 1 ) )
63 ovex 6065 . . . . 5  |-  ( 1  /  R )  e. 
_V
6463a1i 11 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  /  R
)  e.  _V )
65 elioore 10902 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  u  e.  RR )
6665recnd 9070 . . . . . 6  |-  ( u  e.  ( -u 1 (,) 1 )  ->  u  e.  CC )
67 asincl 20666 . . . . . . 7  |-  ( u  e.  CC  ->  (arcsin `  u )  e.  CC )
68 id 20 . . . . . . . 8  |-  ( u  e.  CC  ->  u  e.  CC )
6914a1i 11 . . . . . . . . . 10  |-  ( u  e.  CC  ->  1  e.  CC )
70 sqcl 11399 . . . . . . . . . 10  |-  ( u  e.  CC  ->  (
u ^ 2 )  e.  CC )
7169, 70subcld 9367 . . . . . . . . 9  |-  ( u  e.  CC  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
7271sqrcld 12194 . . . . . . . 8  |-  ( u  e.  CC  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  e.  CC )
7368, 72mulcld 9064 . . . . . . 7  |-  ( u  e.  CC  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
7467, 73addcld 9063 . . . . . 6  |-  ( u  e.  CC  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
7566, 74syl 16 . . . . 5  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
7675adantl 453 . . . 4  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( (arcsin `  u
)  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
77 ovex 6065 . . . . 5  |-  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
7877a1i 11 . . . 4  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
79 recn 9036 . . . . . . 7  |-  ( t  e.  RR  ->  t  e.  CC )
8079adantl 453 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  CC )
8114a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  CC )
823dvmptid 19796 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  RR  |->  t ) )  =  ( t  e.  RR  |->  1 ) )
83 ioossre 10928 . . . . . . 7  |-  ( -u R (,) R )  C_  RR
8483a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  ( -u R (,) R )  C_  RR )
85 eqid 2404 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
8685tgioo2 18787 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
87 iooretop 18753 . . . . . . 7  |-  ( -u R (,) R )  e.  ( topGen `  ran  (,) )
8887a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  ( -u R (,) R )  e.  ( topGen `  ran  (,) )
)
893, 80, 81, 82, 84, 86, 85, 88dvmptres 19802 . . . . 5  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  t ) )  =  ( t  e.  ( -u R (,) R )  |->  1 ) )
903, 6, 15, 89, 7, 9dvmptdivc 19804 . . . 4  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( t  /  R ) ) )  =  ( t  e.  ( -u R (,) R )  |->  ( 1  /  R ) ) )
9166, 67syl 16 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (arcsin `  u )  e.  CC )
9291adantl 453 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
(arcsin `  u )  e.  CC )
93 ovex 6065 . . . . . . 7  |-  ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
9493a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
95 dvreasin 26179 . . . . . . 7  |-  ( RR 
_D  (arcsin  |`  ( -u
1 (,) 1 ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
96 asinf 20665 . . . . . . . . . 10  |- arcsin : CC --> CC
9796a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  -> arcsin : CC --> CC )
98 ioossre 10928 . . . . . . . . . . 11  |-  ( -u
1 (,) 1 ) 
C_  RR
99 ax-resscn 9003 . . . . . . . . . . 11  |-  RR  C_  CC
10098, 99sstri 3317 . . . . . . . . . 10  |-  ( -u
1 (,) 1 ) 
C_  CC
101100a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 ) 
C_  CC )
10297, 101feqresmpt 5739 . . . . . . . 8  |-  ( R  e.  RR+  ->  (arcsin  |`  ( -u 1 (,) 1 ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) )
103102oveq2d 6056 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  (arcsin  |`  ( -u
1 (,) 1 ) ) )  =  ( RR  _D  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) ) )
10495, 103syl5reqr 2451 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )
10566, 73syl 16 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
106105adantl 453 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( u  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  CC )
107 ovex 6065 . . . . . . 7  |-  ( ( 1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  e.  _V
108107a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  e.  _V )
10966adantl 453 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  ->  u  e.  CC )
11014a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
1  e.  CC )
111 recn 9036 . . . . . . . . 9  |-  ( u  e.  RR  ->  u  e.  CC )
112111adantl 453 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  u  e.  CC )
11314a1i 11 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  1  e.  CC )
1143dvmptid 19796 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  u ) )  =  ( u  e.  RR  |->  1 ) )
11598a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 ) 
C_  RR )
116 iooretop 18753 . . . . . . . . 9  |-  ( -u
1 (,) 1 )  e.  ( topGen `  ran  (,) )
117116a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 )  e.  ( topGen `  ran  (,) ) )
1183, 112, 113, 114, 115, 86, 85, 117dvmptres 19802 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  u ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  1 ) )
11966, 72syl 16 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  e.  CC )
120119adantl 453 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( sqr `  (
1  -  ( u ^ 2 ) ) )  e.  CC )
121 ovex 6065 . . . . . . . 8  |-  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
122121a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
12337a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  1  e.  RR )
12465resqcld 11504 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  e.  RR )
125123, 124resubcld 9421 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  RR )
126 elioo2 10913 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( u  e.  (
-u 1 (,) 1
)  <->  ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 ) ) )
12758, 59, 126mp2an 654 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  <->  ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 ) )
128 id 20 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  u  e.  RR )
12937a1i 11 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  1  e.  RR )
130128, 129absltd 12187 . . . . . . . . . . . . . . 15  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  ( -u 1  <  u  /\  u  <  1 ) ) )
131111abscld 12193 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  ( abs `  u )  e.  RR )
132111absge0d 12201 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  0  <_  ( abs `  u
) )
133 0le1 9507 . . . . . . . . . . . . . . . . . 18  |-  0  <_  1
134133a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  0  <_  1 )
135131, 129, 132, 134lt2sqd 11512 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  ( ( abs `  u ) ^
2 )  <  (
1 ^ 2 ) ) )
136 absresq 12062 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
( abs `  u
) ^ 2 )  =  ( u ^
2 ) )
137 sq1 11431 . . . . . . . . . . . . . . . . . 18  |-  ( 1 ^ 2 )  =  1
138137a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
1 ^ 2 )  =  1 )
139136, 138breq12d 4185 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( ( abs `  u
) ^ 2 )  <  ( 1 ^ 2 )  <->  ( u ^ 2 )  <  1 ) )
140 resqcl 11404 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
u ^ 2 )  e.  RR )
141140, 129posdifd 9569 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( u ^ 2 )  <  1  <->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
142135, 139, 1413bitrd 271 . . . . . . . . . . . . . . 15  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
143130, 142bitr3d 247 . . . . . . . . . . . . . 14  |-  ( u  e.  RR  ->  (
( -u 1  <  u  /\  u  <  1
)  <->  0  <  (
1  -  ( u ^ 2 ) ) ) )
144143biimpd 199 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  (
( -u 1  <  u  /\  u  <  1
)  ->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
1451443impib 1151 . . . . . . . . . . . 12  |-  ( ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 )  -> 
0  <  ( 1  -  ( u ^
2 ) ) )
146127, 145sylbi 188 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  0  <  ( 1  -  (
u ^ 2 ) ) )
147125, 146elrpd 10602 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  RR+ )
148147adantl 453 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 1  -  (
u ^ 2 ) )  e.  RR+ )
149 negex 9260 . . . . . . . . . 10  |-  -u (
2  x.  u )  e.  _V
150149a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  ->  -u ( 2  x.  u
)  e.  _V )
151 rpcn 10576 . . . . . . . . . . 11  |-  ( v  e.  RR+  ->  v  e.  CC )
152151sqrcld 12194 . . . . . . . . . 10  |-  ( v  e.  RR+  ->  ( sqr `  v )  e.  CC )
153152adantl 453 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  v  e.  RR+ )  ->  ( sqr `  v )  e.  CC )
154 ovex 6065 . . . . . . . . . 10  |-  ( 1  /  ( 2  x.  ( sqr `  v
) ) )  e. 
_V
155154a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  v  e.  RR+ )  ->  (
1  /  ( 2  x.  ( sqr `  v
) ) )  e. 
_V )
15614a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  1  e.  CC )
157111sqcld 11476 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  (
u ^ 2 )  e.  CC )
158156, 157subcld 9367 . . . . . . . . . . 11  |-  ( u  e.  RR  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
159158adantl 453 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
160149a1i 11 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  -u (
2  x.  u )  e.  _V )
161 0re 9047 . . . . . . . . . . . . 13  |-  0  e.  RR
162161a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  0  e.  RR )
16314a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  1  e.  CC )
1643, 163dvmptc 19797 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  1 ) )  =  ( u  e.  RR  |->  0 ) )
165157adantl 453 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
u ^ 2 )  e.  CC )
166 ovex 6065 . . . . . . . . . . . . 13  |-  ( 2  x.  u )  e. 
_V
167166a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
2  x.  u )  e.  _V )
16885cnfldtopon 18770 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
169 toponmax 16948 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
170168, 169mp1i 12 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  CC  e.  ( TopOpen ` fld ) )
171 df-ss 3294 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  <->  ( RR  i^i  CC )  =  RR )
17299, 171mpbi 200 . . . . . . . . . . . . . 14  |-  ( RR 
i^i  CC )  =  RR
173172a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( RR 
i^i  CC )  =  RR )
17470adantl 453 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  u  e.  CC )  ->  (
u ^ 2 )  e.  CC )
175166a1i 11 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  u  e.  CC )  ->  (
2  x.  u )  e.  _V )
176 2nn 10089 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
177 dvexp 19792 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  NN  ->  ( CC  _D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  ( u ^ (
2  -  1 ) ) ) ) )
178176, 177ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  ( u ^ (
2  -  1 ) ) ) )
179 2m1e1 10051 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
180179oveq2i 6051 . . . . . . . . . . . . . . . . . 18  |-  ( u ^ ( 2  -  1 ) )  =  ( u ^ 1 )
181 exp1 11342 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  CC  ->  (
u ^ 1 )  =  u )
182180, 181syl5eq 2448 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  CC  ->  (
u ^ ( 2  -  1 ) )  =  u )
183182oveq2d 6056 . . . . . . . . . . . . . . . 16  |-  ( u  e.  CC  ->  (
2  x.  ( u ^ ( 2  -  1 ) ) )  =  ( 2  x.  u ) )
184183mpteq2ia 4251 . . . . . . . . . . . . . . 15  |-  ( u  e.  CC  |->  ( 2  x.  ( u ^
( 2  -  1 ) ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) )
185178, 184eqtri 2424 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) )
186185a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) ) )
18785, 3, 170, 173, 174, 175, 186dvmptres3 19795 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( u ^
2 ) ) )  =  ( u  e.  RR  |->  ( 2  x.  u ) ) )
1883, 113, 162, 164, 165, 167, 187dvmptsub 19806 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( 1  -  ( u ^ 2 ) ) ) )  =  ( u  e.  RR  |->  ( 0  -  ( 2  x.  u
) ) ) )
189 df-neg 9250 . . . . . . . . . . . 12  |-  -u (
2  x.  u )  =  ( 0  -  ( 2  x.  u
) )
190189mpteq2i 4252 . . . . . . . . . . 11  |-  ( u  e.  RR  |->  -u (
2  x.  u ) )  =  ( u  e.  RR  |->  ( 0  -  ( 2  x.  u ) ) )
191188, 190syl6eqr 2454 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( 1  -  ( u ^ 2 ) ) ) )  =  ( u  e.  RR  |->  -u ( 2  x.  u ) ) )
1923, 159, 160, 191, 115, 86, 85, 117dvmptres 19802 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( 1  -  ( u ^
2 ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  -u (
2  x.  u ) ) )
193 dvsqr 20581 . . . . . . . . . 10  |-  ( RR 
_D  ( v  e.  RR+  |->  ( sqr `  v
) ) )  =  ( v  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  v ) ) ) )
194193a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( RR 
_D  ( v  e.  RR+  |->  ( sqr `  v
) ) )  =  ( v  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  v ) ) ) ) )
195 fveq2 5687 . . . . . . . . 9  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  ( sqr `  v )  =  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )
196195oveq2d 6056 . . . . . . . . . 10  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  (
2  x.  ( sqr `  v ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
197196oveq2d 6056 . . . . . . . . 9  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  (
1  /  ( 2  x.  ( sqr `  v
) ) )  =  ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
1983, 3, 148, 150, 153, 155, 192, 194, 195, 197dvmptco 19811 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u
) ) ) )
199 2cn 10026 . . . . . . . . . . . . 13  |-  2  e.  CC
200199a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  2  e.  CC )
201200, 66mulneg2d 9443 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  -u u
)  =  -u (
2  x.  u ) )
202201oveq1d 6055 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 2  x.  -u u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( -u ( 2  x.  u )  / 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
20366negcld 9354 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u u  e.  CC )
204146gt0ne0d 9547 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  =/=  0 )
20566, 71syl 16 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
206205adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( 1  -  ( u ^ 2 ) )  e.  CC )
207 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )
208206, 207sqr00d 12198 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( 1  -  ( u ^ 2 ) )  =  0 )
209208ex 424 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0  -> 
( 1  -  (
u ^ 2 ) )  =  0 ) )
210209necon3d 2605 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  -  (
u ^ 2 ) )  =/=  0  -> 
( sqr `  (
1  -  ( u ^ 2 ) ) )  =/=  0 ) )
211204, 210mpd 15 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =/=  0 )
212 2ne0 10039 . . . . . . . . . . . 12  |-  2  =/=  0
213212a1i 11 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  2  =/=  0 )
214203, 119, 200, 211, 213divcan5d 9772 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 2  x.  -u u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
215200, 66mulcld 9064 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  u )  e.  CC )
216215negcld 9354 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
2  x.  u )  e.  CC )
217200, 119mulcld 9064 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
218200, 119, 213, 211mulne0d 9630 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =/=  0 )
219216, 217, 218divrec2d 9750 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u ( 2  x.  u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( ( 1  / 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  x.  -u (
2  x.  u ) ) )
220202, 214, 2193eqtr3rd 2445 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u ) )  =  ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
221220mpteq2ia 4251 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u
) ) )  =  ( u  e.  (
-u 1 (,) 1
)  |->  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
222198, 221syl6eq 2452 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )
2233, 109, 110, 118, 120, 122, 222dvmptmul 19800 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) )
2243, 92, 94, 104, 106, 108, 223dvmptadd 19799 . . . . 5  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( (arcsin `  u )  +  ( u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) ) )
225119mulid2d 9062 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )
226203, 119, 211divcld 9746 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
227226, 66mulcomd 9065 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  x.  u )  =  ( u  x.  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
22866, 203, 119, 211divassd 9781 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( u  x.  -u u
)  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( u  x.  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
22966, 66mulneg2d 9443 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  -u u
)  =  -u (
u  x.  u ) )
23066sqvald 11475 . . . . . . . . . . . . . 14  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  =  ( u  x.  u ) )
231230negeqd 9256 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
u ^ 2 )  =  -u ( u  x.  u ) )
232229, 231eqtr4d 2439 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  -u u
)  =  -u (
u ^ 2 ) )
233232oveq1d 6055 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( u  x.  -u u
)  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
234227, 228, 2333eqtr2d 2442 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  x.  u )  =  ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
235225, 234oveq12d 6058 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  =  ( ( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
23666sqcld 11476 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  e.  CC )
237236negcld 9354 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
u ^ 2 )  e.  CC )
238237, 119, 211divcld 9746 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
239119, 238addcomd 9224 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
240235, 239eqtrd 2436 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  =  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) )
241240oveq2d 6056 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) ) )
2421192timesd 10166 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )
24369, 70negsubd 9373 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
1  +  -u (
u ^ 2 ) )  =  ( 1  -  ( u ^
2 ) ) )
24471sqsqrd 12196 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) ) ^ 2 )  =  ( 1  -  ( u ^ 2 ) ) )
24572sqvald 11475 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) ) ^ 2 )  =  ( ( sqr `  ( 1  -  (
u ^ 2 ) ) )  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
246243, 244, 2453eqtr2d 2442 . . . . . . . . . . . 12  |-  ( u  e.  CC  ->  (
1  +  -u (
u ^ 2 ) )  =  ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
24766, 246syl 16 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  +  -u (
u ^ 2 ) )  =  ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
248247oveq1d 6055 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  +  -u ( u ^ 2 ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  =  ( ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
24914a1i 11 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  1  e.  CC )
250249, 237, 119, 211divdird 9784 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  +  -u ( u ^ 2 ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  =  ( ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
251119, 119, 211divcan3d 9751 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( ( sqr `  (
1  -  ( u ^ 2 ) ) )  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  =  ( sqr `  ( 1  -  ( u ^
2 ) ) ) )
252248, 250, 2513eqtr3rd 2445 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
253252oveq1d 6055 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )
254119, 211reccld 9739 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
255254, 238, 119addassd 9066 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) ) )
256242, 253, 2553eqtrrd 2441 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
257241, 256eqtrd 2436 . . . . . 6  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
258257mpteq2ia 4251 . . . . 5  |-  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
259224, 258syl6eq 2452 . . . 4  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( (arcsin `  u )  +  ( u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
260 fveq2 5687 . . . . 5  |-  ( u  =  ( t  /  R )  ->  (arcsin `  u )  =  (arcsin `  ( t  /  R
) ) )
261 id 20 . . . . . 6  |-  ( u  =  ( t  /  R )  ->  u  =  ( t  /  R ) )
262 oveq1 6047 . . . . . . . 8  |-  ( u  =  ( t  /  R )  ->  (
u ^ 2 )  =  ( ( t  /  R ) ^
2 ) )
263262oveq2d 6056 . . . . . . 7  |-  ( u  =  ( t  /  R )  ->  (
1  -  ( u ^ 2 ) )  =  ( 1  -  ( ( t  /  R ) ^ 2 ) ) )
264263fveq2d 5691 . . . . . 6  |-  ( u  =  ( t  /  R )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
265261, 264oveq12d 6058 . . . . 5  |-  ( u  =  ( t  /  R )  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
266260, 265oveq12d 6058 . . . 4  |-  ( u  =  ( t  /  R )  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( (arcsin `  (
t  /  R ) )  +  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
267264oveq2d 6056 . . . 4  |-  ( u  =  ( t  /  R )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
2683, 3, 62, 64, 76, 78, 90, 259, 266, 267dvmptco 19811 . . 3  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  =  ( t  e.  ( -u R (,) R )  |->  ( ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) ) )
2697sqcld 11476 . . 3  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  CC )
2703, 20, 22, 268, 269dvmptcmul 19803 . 2  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( ( R ^ 2 )  x.  ( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) ) ) ) )
271199a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
2  e.  CC )
272271, 18mulcld 9064 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
2737, 9reccld 9739 . . . . . . 7  |-  ( R  e.  RR+  ->  ( 1  /  R )  e.  CC )
274273adantr 452 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  /  R
)  e.  CC )
275272, 274mulcomd 9065 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) )  =  ( ( 1  /  R )  x.  ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
276275oveq2d 6056 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) )  =  ( ( R ^ 2 )  x.  ( ( 1  /  R )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
277269adantr 452 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  e.  CC )
278277, 274, 272mulassd 9067 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( ( R ^ 2 )  x.  ( ( 1  /  R )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
2797sqvald 11475 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =  ( R  x.  R
) )
280279oveq1d 6055 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  /  R )  =  ( ( R  x.  R )  /  R
) )
281269, 7, 9divrecd 9749 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  /  R )  =  ( ( R ^
2 )  x.  (
1  /  R ) ) )
2827, 7, 9divcan3d 9751 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R  x.  R )  /  R )  =  R )
283280, 281, 2823eqtr3d 2444 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  x.  ( 1  /  R ) )  =  R )
284283adantr 452 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  /  R ) )  =  R )
285284oveq1d 6055 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( R  x.  ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
2868, 271, 18mul12d 9231 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
28723resqcld 11504 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR )
288287adantr 452 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  e.  RR )
28923sqge0d 11505 . . . . . . . . 9  |-  ( R  e.  RR+  ->  0  <_ 
( R ^ 2 ) )
290289adantr 452 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <_  ( R ^ 2 ) )
29137a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
1  e.  RR )
2924adantl 453 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
t  e.  RR )
29323adantr 452 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  e.  RR )
294292, 293, 10redivcld 9798 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  RR )
295294resqcld 11504 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  RR )
296291, 295resubcld 9421 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  RR )
297161a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  e.  RR )
29829, 30absltd 12187 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  ( -u R  <  t  /\  t  < 
R ) ) )
29979abscld 12193 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
300299adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
30179absge0d 12201 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
302301adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
303 rpge0 10580 . . . . . . . . . . . . . . . . . 18  |-  ( R  e.  RR+  ->  0  <_  R )
304303adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  R )
305300, 30, 302, 304lt2sqd 11512 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  ( ( abs `  t ) ^
2 )  <  ( R ^ 2 ) ) )
306 absresq 12062 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
307306adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
308269adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  CC )
309308mulid1d 9061 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( R ^ 2 )  x.  1 )  =  ( R ^
2 ) )
310309eqcomd 2409 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  =  ( ( R ^
2 )  x.  1 ) )
311307, 310breq12d 4185 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( abs `  t
) ^ 2 )  <  ( R ^
2 )  <->  ( t ^ 2 )  < 
( ( R ^
2 )  x.  1 ) ) )
3127adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  CC )
31380, 312, 31sqdivd 11491 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  =  ( ( t ^ 2 )  / 
( R ^ 2 ) ) )
314313breq1d 4182 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <  1  <->  (
( t ^ 2 )  /  ( R ^ 2 ) )  <  1 ) )
31532resqcld 11504 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  e.  RR )
316315, 45posdifd 9569 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <  1  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
317 resqcl 11404 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
318317adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
319 rpgt0 10579 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR+  ->  0  < 
R )
320161a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  0  e.  RR )
321 0le0 10037 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  <_  0
322321a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  0  <_ 
0 )
323320, 23, 322, 303lt2sqd 11512 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  ( 0 ^ 2 )  < 
( R ^ 2 ) ) )
324 sq0 11428 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0 ^ 2 )  =  0
325324a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( 0 ^ 2 )  =  0 )
326325breq1d 4182 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( ( 0 ^ 2 )  <  ( R ^
2 )  <->  0  <  ( R ^ 2 ) ) )
327323, 326bitrd 245 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  0  <  ( R ^ 2 ) ) )
328319, 327mpbid 202 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  RR+  ->  0  < 
( R ^ 2 ) )
329287, 328elrpd 10602 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR+ )
330329adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR+ )
331318, 45, 330ltdivmuld 10651 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <  1  <->  ( t ^ 2 )  < 
( ( R ^
2 )  x.  1 ) ) )
332314, 316, 3313bitr3rd 276 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <  ( ( R ^ 2 )  x.  1 )  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
333305, 311, 3323bitrd 271 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
334298, 333bitr3d 247 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  <->  0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
335334biimpd 199 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  0  <  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
336335exp4b 591 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <  t  -> 
( t  <  R  ->  0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )
3373363impd 1167 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <  t  /\  t  <  R )  -> 
0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
33828, 337sylbid 207 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  ->  0  <  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )
339338imp 419 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
340297, 296, 339ltled 9177 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
341288, 290, 296, 340sqrmuld 12182 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
342277, 15, 16subdid 9445 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( ( R ^ 2 )  x.  1 )  -  ( ( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) ) )
343277mulid1d 9061 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  1 )  =  ( R ^ 2 ) )
3446, 8, 10sqdivd 11491 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  =  ( ( t ^ 2 )  /  ( R ^
2 ) ) )
345344oveq2d 6056 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( ( R ^ 2 )  x.  ( ( t ^ 2 )  / 
( R ^ 2 ) ) ) )
3465sqcld 11476 . . . . . . . . . . . . 13  |-  ( t  e.  ( -u R (,) R )  ->  (
t ^ 2 )  e.  CC )
347346adantl 453 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t ^ 2 )  e.  CC )
348 sqne0 11403 . . . . . . . . . . . . . . 15  |-  ( R  e.  CC  ->  (
( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
3497, 348syl 16 . . . . . . . . . . . . . 14  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
3509, 349mpbird 224 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =/=  0 )
351350adantr 452 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  =/=  0 )
352347, 277, 351divcan2d 9748 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t ^ 2 )  /  ( R ^ 2 ) ) )  =  ( t ^ 2 ) )
353345, 352eqtrd 2436 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( t ^ 2 ) )
354343, 353oveq12d 6058 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  1 )  -  (
( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
355342, 354eqtrd 2436 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
356355fveq2d 5691 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
35723, 303sqrsqd 12177 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( sqr `  ( R ^ 2 ) )  =  R )
358357adantr 452 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  ( R ^ 2 ) )  =  R )
359358oveq1d 6055 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )
360341, 356, 3593eqtr3rd 2445 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
361360oveq2d 6056 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 2  x.  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
362285, 286, 3613eqtrd 2440 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
363276, 278, 3623eqtr2d 2442 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
364363mpteq2dva 4255 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
365270, 364eqtrd 2436 1  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916    i^i cin 3279    C_ wss 3280   {cpr 3775   class class class wbr 4172    e. cmpt 4226   ran crn 4838    |` cres 4839   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   RR+crp 10568   (,)cioo 10872   ^cexp 11337   sqrcsqr 11993   abscabs 11994   TopOpenctopn 13604   topGenctg 13620  ℂfldccnfld 16658  TopOnctopon 16914    _D cdv 19703  arcsincasin 20655
This theorem is referenced by:  areacirc  26187
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-tan 12629  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408  df-asin 20658
  Copyright terms: Public domain W3C validator