Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem2 Structured version   Unicode version

Theorem areacirclem2 28504
Description: Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem2  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem2
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 resqcl 11948 . . . . . . . 8  |-  ( R  e.  RR  ->  ( R ^ 2 )  e.  RR )
21adantr 465 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( R ^ 2 )  e.  RR )
32adantr 465 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( R ^ 2 )  e.  RR )
4 renegcl 9687 . . . . . . . . . 10  |-  ( R  e.  RR  ->  -u R  e.  RR )
5 iccssre 11392 . . . . . . . . . 10  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
64, 5mpancom 669 . . . . . . . . 9  |-  ( R  e.  RR  ->  ( -u R [,] R ) 
C_  RR )
76sselda 3371 . . . . . . . 8  |-  ( ( R  e.  RR  /\  t  e.  ( -u R [,] R ) )  -> 
t  e.  RR )
87resqcld 12049 . . . . . . 7  |-  ( ( R  e.  RR  /\  t  e.  ( -u R [,] R ) )  -> 
( t ^ 2 )  e.  RR )
98adantlr 714 . . . . . 6  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( t ^ 2 )  e.  RR )
103, 9resubcld 9791 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  RR )
11 elicc2 11375 . . . . . . . . 9  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
124, 11mpancom 669 . . . . . . . 8  |-  ( R  e.  RR  ->  (
t  e.  ( -u R [,] R )  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
1312adantr 465 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  <->  ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R ) ) )
1413ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR )
15 resqcl 11948 . . . . . . . . . . . . . . 15  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
16153ad2ant3 1011 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
1714, 16subge0d 9944 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) )  <->  ( t ^ 2 )  <_ 
( R ^ 2 ) ) )
18 absresq 12806 . . . . . . . . . . . . . . 15  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
19183ad2ant3 1011 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
2019breq1d 4317 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( ( abs `  t
) ^ 2 )  <_  ( R ^
2 )  <->  ( t ^ 2 )  <_ 
( R ^ 2 ) ) )
2117, 20bitr4d 256 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) )  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
22 recn 9387 . . . . . . . . . . . . . . 15  |-  ( t  e.  RR  ->  t  e.  CC )
2322abscld 12937 . . . . . . . . . . . . . 14  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
24233ad2ant3 1011 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
25 simp1 988 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  R  e.  RR )
2622absge0d 12945 . . . . . . . . . . . . . 14  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
27263ad2ant3 1011 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
28 simp2 989 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  0  <_  R )
2924, 25, 27, 28le2sqd 12058 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( ( abs `  t ) ^
2 )  <_  ( R ^ 2 ) ) )
30 simp3 990 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  t  e.  RR )
3130, 25absled 12932 . . . . . . . . . . . 12  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( abs `  t
)  <_  R  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
3221, 29, 313bitr2d 281 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) )  <->  ( -u R  <_  t  /\  t  <_  R ) ) )
3332biimprd 223 . . . . . . . . . 10  |-  ( ( R  e.  RR  /\  0  <_  R  /\  t  e.  RR )  ->  (
( -u R  <_  t  /\  t  <_  R )  ->  0  <_  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
34333expa 1187 . . . . . . . . 9  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  RR )  ->  ( ( -u R  <_  t  /\  t  <_  R )  ->  0  <_  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
3534exp4b 607 . . . . . . . 8  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  RR  ->  ( -u R  <_ 
t  ->  ( t  <_  R  ->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
36353impd 1201 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( t  e.  RR  /\  -u R  <_  t  /\  t  <_  R )  ->  0  <_  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
3713, 36sylbid 215 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  ->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) ) )
3837imp 429 . . . . 5  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  0  <_  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )
39 elrege0 11407 . . . . 5  |-  ( ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,) +oo )  <->  ( ( ( R ^ 2 )  -  ( t ^
2 ) )  e.  RR  /\  0  <_ 
( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
4010, 38, 39sylanbrc 664 . . . 4  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,) +oo )
)
41 fvres 5719 . . . 4  |-  ( ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,) +oo )  ->  ( ( sqr  |`  ( 0 [,) +oo ) ) `
 ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  =  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
4240, 41syl 16 . . 3  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R ) )  ->  ( ( sqr  |`  ( 0 [,) +oo ) ) `  (
( R ^ 2 )  -  ( t ^ 2 ) ) )  =  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
4342mpteq2dva 4393 . 2  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( sqr  |`  ( 0 [,) +oo ) ) `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  =  ( t  e.  ( -u R [,] R )  |->  ( sqr `  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) ) )
44 eqid 2443 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4544cnfldtopon 20377 . . . . . 6  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
46 ax-resscn 9354 . . . . . . 7  |-  RR  C_  CC
476, 46syl6ss 3383 . . . . . 6  |-  ( R  e.  RR  ->  ( -u R [,] R ) 
C_  CC )
48 resttopon 18780 . . . . . 6  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( -u R [,] R ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
4945, 47, 48sylancr 663 . . . . 5  |-  ( R  e.  RR  ->  (
( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
5049adantr 465 . . . 4  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( TopOpen ` fld )t  ( -u R [,] R ) )  e.  (TopOn `  ( -u R [,] R ) ) )
51 resmpt 5171 . . . . . . . 8  |-  ( (
-u R [,] R
)  C_  CC  ->  ( ( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  |`  ( -u R [,] R ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) )
5247, 51syl 16 . . . . . . 7  |-  ( R  e.  RR  ->  (
( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  |`  ( -u R [,] R ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) ) )
5345a1i 11 . . . . . . . . 9  |-  ( R  e.  RR  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
54 recn 9387 . . . . . . . . . . 11  |-  ( R  e.  RR  ->  R  e.  CC )
5554sqcld 12021 . . . . . . . . . 10  |-  ( R  e.  RR  ->  ( R ^ 2 )  e.  CC )
5653, 53, 55cnmptc 19250 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
t  e.  CC  |->  ( R ^ 2 ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
5744sqcn 20465 . . . . . . . . . 10  |-  ( t  e.  CC  |->  ( t ^ 2 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) )
5857a1i 11 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
t  e.  CC  |->  ( t ^ 2 ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
5944subcn 20457 . . . . . . . . . 10  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
6059a1i 11 . . . . . . . . 9  |-  ( R  e.  RR  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
6153, 56, 58, 60cnmpt12f 19254 . . . . . . . 8  |-  ( R  e.  RR  ->  (
t  e.  CC  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
6245toponunii 18552 . . . . . . . . 9  |-  CC  =  U. ( TopOpen ` fld )
6362cnrest 18904 . . . . . . . 8  |-  ( ( ( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )  /\  ( -u R [,] R ) 
C_  CC )  -> 
( ( t  e.  CC  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  |`  ( -u R [,] R
) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) ) )
6461, 47, 63syl2anc 661 . . . . . . 7  |-  ( R  e.  RR  ->  (
( t  e.  CC  |->  ( ( R ^
2 )  -  (
t ^ 2 ) ) )  |`  ( -u R [,] R ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) ) )
6552, 64eqeltrrd 2518 . . . . . 6  |-  ( R  e.  RR  ->  (
t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) ) )
6665adantr 465 . . . . 5  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld )
) )
6745a1i 11 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( TopOpen ` fld )  e.  (TopOn `  CC ) )
68 eqid 2443 . . . . . . . 8  |-  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  =  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
6968rnmpt 5100 . . . . . . 7  |-  ran  (
t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  =  { u  |  E. t  e.  (
-u R [,] R
) u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) }
70 simp3 990 . . . . . . . . . 10  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R )  /\  u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  ->  u  =  ( ( R ^
2 )  -  (
t ^ 2 ) ) )
71403adant3 1008 . . . . . . . . . 10  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R )  /\  u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  ->  ( ( R ^ 2 )  -  ( t ^ 2 ) )  e.  ( 0 [,) +oo )
)
7270, 71eqeltrd 2517 . . . . . . . . 9  |-  ( ( ( R  e.  RR  /\  0  <_  R )  /\  t  e.  ( -u R [,] R )  /\  u  =  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  ->  u  e.  ( 0 [,) +oo ) )
7372rexlimdv3a 2858 . . . . . . . 8  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( E. t  e.  ( -u R [,] R ) u  =  ( ( R ^
2 )  -  (
t ^ 2 ) )  ->  u  e.  ( 0 [,) +oo ) ) )
7473abssdv 3441 . . . . . . 7  |-  ( ( R  e.  RR  /\  0  <_  R )  ->  { u  |  E. t  e.  ( -u R [,] R ) u  =  ( ( R ^
2 )  -  (
t ^ 2 ) ) }  C_  (
0 [,) +oo )
)
7569, 74syl5eqss 3415 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  ->  ran  ( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  C_  ( 0 [,) +oo ) )
76 0re 9401 . . . . . . . . 9  |-  0  e.  RR
77 pnfxr 11107 . . . . . . . . 9  |- +oo  e.  RR*
78 icossre 11391 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
7976, 77, 78mp2an 672 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR
8079, 46sstri 3380 . . . . . . 7  |-  ( 0 [,) +oo )  C_  CC
8180a1i 11 . . . . . 6  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( 0 [,) +oo )  C_  CC )
82 cnrest2 18905 . . . . . 6  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  C_  ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  CC )  ->  ( ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) )  <->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( 0 [,) +oo ) ) ) ) )
8367, 75, 81, 82syl3anc 1218 . . . . 5  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( TopOpen ` fld ) )  <->  ( t  e.  ( -u R [,] R )  |->  ( ( R ^ 2 )  -  ( t ^
2 ) ) )  e.  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  ( 0 [,) +oo ) ) ) ) )
8466, 83mpbid 210 . . . 4  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( R ^ 2 )  -  ( t ^ 2 ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( (
TopOpen ` fld )t  ( 0 [,) +oo ) ) ) )
85 ssid 3390 . . . . . . . 8  |-  CC  C_  CC
86 cncfss 20490 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( 0 [,) +oo ) -cn-> RR )  C_  (
( 0 [,) +oo ) -cn-> CC ) )
8746, 85, 86mp2an 672 . . . . . . 7  |-  ( ( 0 [,) +oo ) -cn->
RR )  C_  (
( 0 [,) +oo ) -cn-> CC )
88 resqrcn 22202 . . . . . . 7  |-  ( sqr  |`  ( 0 [,) +oo ) )  e.  ( ( 0 [,) +oo ) -cn-> RR )
8987, 88sselii 3368 . . . . . 6  |-  ( sqr  |`  ( 0 [,) +oo ) )  e.  ( ( 0 [,) +oo ) -cn-> CC )
90 eqid 2443 . . . . . . . 8  |-  ( (
TopOpen ` fld )t  ( 0 [,) +oo ) )  =  ( ( TopOpen ` fld )t  ( 0 [,) +oo ) )
91 eqid 2443 . . . . . . . 8  |-  ( (
TopOpen ` fld )t  CC )  =  ( ( TopOpen ` fld )t  CC )
9244, 90, 91cncfcn 20500 . . . . . . 7  |-  ( ( ( 0 [,) +oo )  C_  CC  /\  CC  C_  CC )  ->  (
( 0 [,) +oo ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( 0 [,) +oo ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
9380, 85, 92mp2an 672 . . . . . 6  |-  ( ( 0 [,) +oo ) -cn->
CC )  =  ( ( ( TopOpen ` fld )t  ( 0 [,) +oo ) )  Cn  (
( TopOpen ` fld )t  CC ) )
9489, 93eleqtri 2515 . . . . 5  |-  ( sqr  |`  ( 0 [,) +oo ) )  e.  ( ( ( TopOpen ` fld )t  ( 0 [,) +oo ) )  Cn  (
( TopOpen ` fld )t  CC ) )
9594a1i 11 . . . 4  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( sqr  |`  ( 0 [,) +oo ) )  e.  ( ( (
TopOpen ` fld )t  ( 0 [,) +oo ) )  Cn  (
( TopOpen ` fld )t  CC ) ) )
9650, 84, 95cnmpt11f 19252 . . 3  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( sqr  |`  ( 0 [,) +oo ) ) `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
97 eqid 2443 . . . . . 6  |-  ( (
TopOpen ` fld )t  ( -u R [,] R ) )  =  ( ( TopOpen ` fld )t  ( -u R [,] R ) )
9844, 97, 91cncfcn 20500 . . . . 5  |-  ( ( ( -u R [,] R )  C_  CC  /\  CC  C_  CC )  ->  ( ( -u R [,] R ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
9947, 85, 98sylancl 662 . . . 4  |-  ( R  e.  RR  ->  (
( -u R [,] R
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
10099adantr 465 . . 3  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( ( -u R [,] R ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( -u R [,] R ) )  Cn  ( ( TopOpen ` fld )t  CC ) ) )
10196, 100eleqtrrd 2520 . 2  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( ( sqr  |`  ( 0 [,) +oo ) ) `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
10243, 101eqeltrrd 2518 1  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
( t  e.  (
-u R [,] R
)  |->  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )  e.  ( ( -u R [,] R ) -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {cab 2429   E.wrex 2731    C_ wss 3343   class class class wbr 4307    e. cmpt 4365   ran crn 4856    |` cres 4857   ` cfv 5433  (class class class)co 6106   CCcc 9295   RRcr 9296   0cc0 9297   +oocpnf 9430   RR*cxr 9432    <_ cle 9434    - cmin 9610   -ucneg 9611   2c2 10386   [,)cico 11317   [,]cicc 11318   ^cexp 11880   sqrcsqr 12737   abscabs 12738   ↾t crest 14374   TopOpenctopn 14375  ℂfldccnfld 17833  TopOnctopon 18514    Cn ccn 18843    tX ctx 19148   -cn->ccncf 20467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374  ax-pre-sup 9375  ax-addf 9376  ax-mulf 9377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-iin 4189  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-of 6335  df-om 6492  df-1st 6592  df-2nd 6593  df-supp 6706  df-recs 6847  df-rdg 6881  df-1o 6935  df-2o 6936  df-oadd 6939  df-er 7116  df-map 7231  df-pm 7232  df-ixp 7279  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-fsupp 7636  df-fi 7676  df-sup 7706  df-oi 7739  df-card 8124  df-cda 8352  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-2 10395  df-3 10396  df-4 10397  df-5 10398  df-6 10399  df-7 10400  df-8 10401  df-9 10402  df-10 10403  df-n0 10595  df-z 10662  df-dec 10771  df-uz 10877  df-q 10969  df-rp 11007  df-xneg 11104  df-xadd 11105  df-xmul 11106  df-ioo 11319  df-ioc 11320  df-ico 11321  df-icc 11322  df-fz 11453  df-fzo 11564  df-fl 11657  df-mod 11724  df-seq 11822  df-exp 11881  df-fac 12067  df-bc 12094  df-hash 12119  df-shft 12571  df-cj 12603  df-re 12604  df-im 12605  df-sqr 12739  df-abs 12740  df-limsup 12964  df-clim 12981  df-rlim 12982  df-sum 13179  df-ef 13368  df-sin 13370  df-cos 13371  df-tan 13372  df-pi 13373  df-struct 14191  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-ress 14196  df-plusg 14266  df-mulr 14267  df-starv 14268  df-sca 14269  df-vsca 14270  df-ip 14271  df-tset 14272  df-ple 14273  df-ds 14275  df-unif 14276  df-hom 14277  df-cco 14278  df-rest 14376  df-topn 14377  df-0g 14395  df-gsum 14396  df-topgen 14397  df-pt 14398  df-prds 14401  df-xrs 14455  df-qtop 14460  df-imas 14461  df-xps 14463  df-mre 14539  df-mrc 14540  df-acs 14542  df-mnd 15430  df-submnd 15480  df-mulg 15563  df-cntz 15850  df-cmn 16294  df-psmet 17824  df-xmet 17825  df-met 17826  df-bl 17827  df-mopn 17828  df-fbas 17829  df-fg 17830  df-cnfld 17834  df-top 18518  df-bases 18520  df-topon 18521  df-topsp 18522  df-cld 18638  df-ntr 18639  df-cls 18640  df-nei 18717  df-lp 18755  df-perf 18756  df-cn 18846  df-cnp 18847  df-haus 18934  df-cmp 19005  df-tx 19150  df-hmeo 19343  df-fil 19434  df-fm 19526  df-flim 19527  df-flf 19528  df-xms 19910  df-ms 19911  df-tms 19912  df-cncf 20469  df-limc 21356  df-dv 21357  df-log 22023  df-cxp 22024
This theorem is referenced by:  areacirclem3  28505  areacirclem4  28506  areacirc  28508
  Copyright terms: Public domain W3C validator