Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem1 Structured version   Unicode version

Theorem areacirclem1 28625
Description: Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem1  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 9478 . . . 4  |-  RR  e.  { RR ,  CC }
21a1i 11 . . 3  |-  ( R  e.  RR+  ->  RR  e.  { RR ,  CC }
)
3 elioore 11434 . . . . . . . 8  |-  ( t  e.  ( -u R (,) R )  ->  t  e.  RR )
43recnd 9516 . . . . . . 7  |-  ( t  e.  ( -u R (,) R )  ->  t  e.  CC )
54adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
t  e.  CC )
6 rpcn 11103 . . . . . . 7  |-  ( R  e.  RR+  ->  R  e.  CC )
76adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  e.  CC )
8 rpne0 11110 . . . . . . 7  |-  ( R  e.  RR+  ->  R  =/=  0 )
98adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  =/=  0 )
105, 7, 9divcld 10211 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  CC )
11 asincl 22394 . . . . 5  |-  ( ( t  /  R )  e.  CC  ->  (arcsin `  ( t  /  R
) )  e.  CC )
1210, 11syl 16 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
(arcsin `  ( t  /  R ) )  e.  CC )
13 ax-1cn 9444 . . . . . . . 8  |-  1  e.  CC
1413a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
1  e.  CC )
1510sqcld 12116 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  CC )
1614, 15subcld 9823 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  CC )
1716sqrcld 13034 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  CC )
1810, 17mulcld 9510 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
1912, 18addcld 9509 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( (arcsin `  (
t  /  R ) )  +  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  CC )
20 ovex 6218 . . . 4  |-  ( ( 2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  x.  ( 1  /  R
) )  e.  _V
2120a1i 11 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) )  e.  _V )
22 rpre 11101 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  R  e.  RR )
2322renegcld 9879 . . . . . . . . 9  |-  ( R  e.  RR+  ->  -u R  e.  RR )
2423rexrd 9537 . . . . . . . 8  |-  ( R  e.  RR+  ->  -u R  e.  RR* )
25 rpxr 11102 . . . . . . . 8  |-  ( R  e.  RR+  ->  R  e. 
RR* )
26 elioo2 11445 . . . . . . . 8  |-  ( (
-u R  e.  RR*  /\  R  e.  RR* )  ->  ( t  e.  (
-u R (,) R
)  <->  ( t  e.  RR  /\  -u R  <  t  /\  t  < 
R ) ) )
2724, 25, 26syl2anc 661 . . . . . . 7  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  <->  ( t  e.  RR  /\  -u R  <  t  /\  t  < 
R ) ) )
28 simpr 461 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  RR )
2922adantr 465 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR )
308adantr 465 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  =/=  0 )
3128, 29, 30redivcld 10263 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  /  R )  e.  RR )
3231a1d 25 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( t  /  R )  e.  RR ) )
336mulm1d 9900 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  ( -u
1  x.  R )  =  -u R )
3433adantr 465 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u 1  x.  R )  =  -u R )
3534breq1d 4403 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u 1  x.  R
)  <  t  <->  -u R  < 
t ) )
36 neg1rr 10530 . . . . . . . . . . . . . . 15  |-  -u 1  e.  RR
3736a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  -u 1  e.  RR )
38 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR+ )
3937, 28, 38ltmuldivd 11174 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u 1  x.  R
)  <  t  <->  -u 1  < 
( t  /  R
) ) )
4035, 39bitr3d 255 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u R  <  t  <->  -u 1  < 
( t  /  R
) ) )
4140biimpd 207 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u R  <  t  ->  -u 1  <  ( t  /  R ) ) )
4241adantrd 468 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  -u 1  <  (
t  /  R ) ) )
43 1re 9489 . . . . . . . . . . . . . . 15  |-  1  e.  RR
4443a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  RR )
4528, 44, 38ltdivmuld 11178 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
)  <  1  <->  t  <  ( R  x.  1 ) ) )
466mulid1d 9507 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  ( R  x.  1 )  =  R )
4746adantr 465 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R  x.  1 )  =  R )
4847breq2d 4405 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  ( R  x.  1 )  <->  t  <  R ) )
4945, 48bitr2d 254 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  R  <->  ( t  /  R )  <  1
) )
5049biimpd 207 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  R  ->  ( t  /  R )  <  1 ) )
5150adantld 467 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( t  /  R )  <  1
) )
5232, 42, 513jcad 1169 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) ) )
5352exp4b 607 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <  t  -> 
( t  <  R  ->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) ) ) )
54533impd 1202 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <  t  /\  t  <  R )  -> 
( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) )
5527, 54sylbid 215 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  ->  (
( t  /  R
)  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) )
5655imp 429 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) )
5736rexri 9540 . . . . . 6  |-  -u 1  e.  RR*
5843rexri 9540 . . . . . 6  |-  1  e.  RR*
59 elioo2 11445 . . . . . 6  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( ( t  /  R )  e.  (
-u 1 (,) 1
)  <->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) ) )
6057, 58, 59mp2an 672 . . . . 5  |-  ( ( t  /  R )  e.  ( -u 1 (,) 1 )  <->  ( (
t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) )
6156, 60sylibr 212 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  ( -u
1 (,) 1 ) )
62 ovex 6218 . . . . 5  |-  ( 1  /  R )  e. 
_V
6362a1i 11 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  /  R
)  e.  _V )
64 elioore 11434 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  u  e.  RR )
6564recnd 9516 . . . . . 6  |-  ( u  e.  ( -u 1 (,) 1 )  ->  u  e.  CC )
66 asincl 22394 . . . . . . 7  |-  ( u  e.  CC  ->  (arcsin `  u )  e.  CC )
67 id 22 . . . . . . . 8  |-  ( u  e.  CC  ->  u  e.  CC )
6813a1i 11 . . . . . . . . . 10  |-  ( u  e.  CC  ->  1  e.  CC )
69 sqcl 12038 . . . . . . . . . 10  |-  ( u  e.  CC  ->  (
u ^ 2 )  e.  CC )
7068, 69subcld 9823 . . . . . . . . 9  |-  ( u  e.  CC  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
7170sqrcld 13034 . . . . . . . 8  |-  ( u  e.  CC  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  e.  CC )
7267, 71mulcld 9510 . . . . . . 7  |-  ( u  e.  CC  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
7366, 72addcld 9509 . . . . . 6  |-  ( u  e.  CC  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
7465, 73syl 16 . . . . 5  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
7574adantl 466 . . . 4  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( (arcsin `  u
)  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
76 ovex 6218 . . . . 5  |-  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
7776a1i 11 . . . 4  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
78 recn 9476 . . . . . . 7  |-  ( t  e.  RR  ->  t  e.  CC )
7978adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  CC )
8013a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  CC )
812dvmptid 21557 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  RR  |->  t ) )  =  ( t  e.  RR  |->  1 ) )
82 ioossre 11461 . . . . . . 7  |-  ( -u R (,) R )  C_  RR
8382a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  ( -u R (,) R )  C_  RR )
84 eqid 2451 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
8584tgioo2 20505 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
86 iooretop 20470 . . . . . . 7  |-  ( -u R (,) R )  e.  ( topGen `  ran  (,) )
8786a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  ( -u R (,) R )  e.  ( topGen `  ran  (,) )
)
882, 79, 80, 81, 83, 85, 84, 87dvmptres 21563 . . . . 5  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  t ) )  =  ( t  e.  ( -u R (,) R )  |->  1 ) )
892, 5, 14, 88, 6, 8dvmptdivc 21565 . . . 4  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( t  /  R ) ) )  =  ( t  e.  ( -u R (,) R )  |->  ( 1  /  R ) ) )
9065, 66syl 16 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (arcsin `  u )  e.  CC )
9190adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
(arcsin `  u )  e.  CC )
92 ovex 6218 . . . . . . 7  |-  ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
9392a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
94 dvreasin 28623 . . . . . . 7  |-  ( RR 
_D  (arcsin  |`  ( -u
1 (,) 1 ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
95 asinf 22393 . . . . . . . . . 10  |- arcsin : CC --> CC
9695a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  -> arcsin : CC --> CC )
97 ioossre 11461 . . . . . . . . . . 11  |-  ( -u
1 (,) 1 ) 
C_  RR
98 ax-resscn 9443 . . . . . . . . . . 11  |-  RR  C_  CC
9997, 98sstri 3466 . . . . . . . . . 10  |-  ( -u
1 (,) 1 ) 
C_  CC
10099a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 ) 
C_  CC )
10196, 100feqresmpt 5847 . . . . . . . 8  |-  ( R  e.  RR+  ->  (arcsin  |`  ( -u 1 (,) 1 ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) )
102101oveq2d 6209 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  (arcsin  |`  ( -u
1 (,) 1 ) ) )  =  ( RR  _D  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) ) )
10394, 102syl5reqr 2507 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )
10465, 72syl 16 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
105104adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( u  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  CC )
106 ovex 6218 . . . . . . 7  |-  ( ( 1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  e.  _V
107106a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  e.  _V )
10865adantl 466 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  ->  u  e.  CC )
10913a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
1  e.  CC )
110 recn 9476 . . . . . . . . 9  |-  ( u  e.  RR  ->  u  e.  CC )
111110adantl 466 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  u  e.  CC )
11213a1i 11 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  1  e.  CC )
1132dvmptid 21557 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  u ) )  =  ( u  e.  RR  |->  1 ) )
11497a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 ) 
C_  RR )
115 iooretop 20470 . . . . . . . . 9  |-  ( -u
1 (,) 1 )  e.  ( topGen `  ran  (,) )
116115a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 )  e.  ( topGen `  ran  (,) ) )
1172, 111, 112, 113, 114, 85, 84, 116dvmptres 21563 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  u ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  1 ) )
11865, 71syl 16 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  e.  CC )
119118adantl 466 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( sqr `  (
1  -  ( u ^ 2 ) ) )  e.  CC )
120 ovex 6218 . . . . . . . 8  |-  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
121120a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
12243a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  1  e.  RR )
12364resqcld 12144 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  e.  RR )
124122, 123resubcld 9880 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  RR )
125 elioo2 11445 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( u  e.  (
-u 1 (,) 1
)  <->  ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 ) ) )
12657, 58, 125mp2an 672 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  <->  ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 ) )
127 id 22 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  u  e.  RR )
12843a1i 11 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  1  e.  RR )
129127, 128absltd 13027 . . . . . . . . . . . . . . 15  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  ( -u 1  <  u  /\  u  <  1 ) ) )
130110abscld 13033 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  ( abs `  u )  e.  RR )
131110absge0d 13041 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  0  <_  ( abs `  u
) )
132 0le1 9967 . . . . . . . . . . . . . . . . . 18  |-  0  <_  1
133132a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  0  <_  1 )
134130, 128, 131, 133lt2sqd 12152 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  ( ( abs `  u ) ^
2 )  <  (
1 ^ 2 ) ) )
135 absresq 12902 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
( abs `  u
) ^ 2 )  =  ( u ^
2 ) )
136 sq1 12070 . . . . . . . . . . . . . . . . . 18  |-  ( 1 ^ 2 )  =  1
137136a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
1 ^ 2 )  =  1 )
138135, 137breq12d 4406 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( ( abs `  u
) ^ 2 )  <  ( 1 ^ 2 )  <->  ( u ^ 2 )  <  1 ) )
139 resqcl 12043 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
u ^ 2 )  e.  RR )
140139, 128posdifd 10030 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( u ^ 2 )  <  1  <->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
141134, 138, 1403bitrd 279 . . . . . . . . . . . . . . 15  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
142129, 141bitr3d 255 . . . . . . . . . . . . . 14  |-  ( u  e.  RR  ->  (
( -u 1  <  u  /\  u  <  1
)  <->  0  <  (
1  -  ( u ^ 2 ) ) ) )
143142biimpd 207 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  (
( -u 1  <  u  /\  u  <  1
)  ->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
1441433impib 1186 . . . . . . . . . . . 12  |-  ( ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 )  -> 
0  <  ( 1  -  ( u ^
2 ) ) )
145126, 144sylbi 195 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  0  <  ( 1  -  (
u ^ 2 ) ) )
146124, 145elrpd 11129 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  RR+ )
147146adantl 466 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 1  -  (
u ^ 2 ) )  e.  RR+ )
148 negex 9712 . . . . . . . . . 10  |-  -u (
2  x.  u )  e.  _V
149148a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  ->  -u ( 2  x.  u
)  e.  _V )
150 rpcn 11103 . . . . . . . . . . 11  |-  ( v  e.  RR+  ->  v  e.  CC )
151150sqrcld 13034 . . . . . . . . . 10  |-  ( v  e.  RR+  ->  ( sqr `  v )  e.  CC )
152151adantl 466 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  v  e.  RR+ )  ->  ( sqr `  v )  e.  CC )
153 ovex 6218 . . . . . . . . . 10  |-  ( 1  /  ( 2  x.  ( sqr `  v
) ) )  e. 
_V
154153a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  v  e.  RR+ )  ->  (
1  /  ( 2  x.  ( sqr `  v
) ) )  e. 
_V )
15513a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  1  e.  CC )
156110sqcld 12116 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  (
u ^ 2 )  e.  CC )
157155, 156subcld 9823 . . . . . . . . . . 11  |-  ( u  e.  RR  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
158157adantl 466 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
159148a1i 11 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  -u (
2  x.  u )  e.  _V )
160 0re 9490 . . . . . . . . . . . . 13  |-  0  e.  RR
161160a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  0  e.  RR )
16213a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  1  e.  CC )
1632, 162dvmptc 21558 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  1 ) )  =  ( u  e.  RR  |->  0 ) )
164156adantl 466 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
u ^ 2 )  e.  CC )
165 ovex 6218 . . . . . . . . . . . . 13  |-  ( 2  x.  u )  e. 
_V
166165a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
2  x.  u )  e.  _V )
16784cnfldtopon 20487 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
168 toponmax 18658 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
169167, 168mp1i 12 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  CC  e.  ( TopOpen ` fld ) )
170 df-ss 3443 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  <->  ( RR  i^i  CC )  =  RR )
17198, 170mpbi 208 . . . . . . . . . . . . . 14  |-  ( RR 
i^i  CC )  =  RR
172171a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( RR 
i^i  CC )  =  RR )
17369adantl 466 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  u  e.  CC )  ->  (
u ^ 2 )  e.  CC )
174165a1i 11 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  u  e.  CC )  ->  (
2  x.  u )  e.  _V )
175 2nn 10583 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
176 dvexp 21553 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  NN  ->  ( CC  _D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  ( u ^ (
2  -  1 ) ) ) ) )
177175, 176ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  ( u ^ (
2  -  1 ) ) ) )
178 2m1e1 10540 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
179178oveq2i 6204 . . . . . . . . . . . . . . . . . 18  |-  ( u ^ ( 2  -  1 ) )  =  ( u ^ 1 )
180 exp1 11981 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  CC  ->  (
u ^ 1 )  =  u )
181179, 180syl5eq 2504 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  CC  ->  (
u ^ ( 2  -  1 ) )  =  u )
182181oveq2d 6209 . . . . . . . . . . . . . . . 16  |-  ( u  e.  CC  ->  (
2  x.  ( u ^ ( 2  -  1 ) ) )  =  ( 2  x.  u ) )
183182mpteq2ia 4475 . . . . . . . . . . . . . . 15  |-  ( u  e.  CC  |->  ( 2  x.  ( u ^
( 2  -  1 ) ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) )
184177, 183eqtri 2480 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) )
185184a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) ) )
18684, 2, 169, 172, 173, 174, 185dvmptres3 21556 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( u ^
2 ) ) )  =  ( u  e.  RR  |->  ( 2  x.  u ) ) )
1872, 112, 161, 163, 164, 166, 186dvmptsub 21567 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( 1  -  ( u ^ 2 ) ) ) )  =  ( u  e.  RR  |->  ( 0  -  ( 2  x.  u
) ) ) )
188 df-neg 9702 . . . . . . . . . . . 12  |-  -u (
2  x.  u )  =  ( 0  -  ( 2  x.  u
) )
189188mpteq2i 4476 . . . . . . . . . . 11  |-  ( u  e.  RR  |->  -u (
2  x.  u ) )  =  ( u  e.  RR  |->  ( 0  -  ( 2  x.  u ) ) )
190187, 189syl6eqr 2510 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( 1  -  ( u ^ 2 ) ) ) )  =  ( u  e.  RR  |->  -u ( 2  x.  u ) ) )
1912, 158, 159, 190, 114, 85, 84, 116dvmptres 21563 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( 1  -  ( u ^
2 ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  -u (
2  x.  u ) ) )
192 dvsqr 22308 . . . . . . . . . 10  |-  ( RR 
_D  ( v  e.  RR+  |->  ( sqr `  v
) ) )  =  ( v  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  v ) ) ) )
193192a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( RR 
_D  ( v  e.  RR+  |->  ( sqr `  v
) ) )  =  ( v  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  v ) ) ) ) )
194 fveq2 5792 . . . . . . . . 9  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  ( sqr `  v )  =  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )
195194oveq2d 6209 . . . . . . . . . 10  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  (
2  x.  ( sqr `  v ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
196195oveq2d 6209 . . . . . . . . 9  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  (
1  /  ( 2  x.  ( sqr `  v
) ) )  =  ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
1972, 2, 147, 149, 152, 154, 191, 193, 194, 196dvmptco 21572 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u
) ) ) )
198 2cnd 10498 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  2  e.  CC )
199198, 65mulneg2d 9902 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  -u u
)  =  -u (
2  x.  u ) )
200199oveq1d 6208 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 2  x.  -u u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( -u ( 2  x.  u )  / 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
20165negcld 9810 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u u  e.  CC )
202145gt0ne0d 10008 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  =/=  0 )
20365, 70syl 16 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
204203adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( 1  -  ( u ^ 2 ) )  e.  CC )
205 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )
206204, 205sqr00d 13038 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( 1  -  ( u ^ 2 ) )  =  0 )
207206ex 434 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0  -> 
( 1  -  (
u ^ 2 ) )  =  0 ) )
208207necon3d 2672 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  -  (
u ^ 2 ) )  =/=  0  -> 
( sqr `  (
1  -  ( u ^ 2 ) ) )  =/=  0 ) )
209202, 208mpd 15 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =/=  0 )
210 2ne0 10518 . . . . . . . . . . . 12  |-  2  =/=  0
211210a1i 11 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  2  =/=  0 )
212201, 118, 198, 209, 211divcan5d 10237 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 2  x.  -u u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
213198, 65mulcld 9510 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  u )  e.  CC )
214213negcld 9810 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
2  x.  u )  e.  CC )
215198, 118mulcld 9510 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
216198, 118, 211, 209mulne0d 10092 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =/=  0 )
217214, 215, 216divrec2d 10215 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u ( 2  x.  u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( ( 1  / 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  x.  -u (
2  x.  u ) ) )
218200, 212, 2173eqtr3rd 2501 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u ) )  =  ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
219218mpteq2ia 4475 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u
) ) )  =  ( u  e.  (
-u 1 (,) 1
)  |->  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
220197, 219syl6eq 2508 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )
2212, 108, 109, 117, 119, 121, 220dvmptmul 21561 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) )
2222, 91, 93, 103, 105, 107, 221dvmptadd 21560 . . . . 5  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( (arcsin `  u )  +  ( u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) ) )
223118mulid2d 9508 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )
224201, 118, 209divcld 10211 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
225224, 65mulcomd 9511 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  x.  u )  =  ( u  x.  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
22665, 201, 118, 209divassd 10246 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( u  x.  -u u
)  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( u  x.  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
22765, 65mulneg2d 9902 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  -u u
)  =  -u (
u  x.  u ) )
22865sqvald 12115 . . . . . . . . . . . . . 14  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  =  ( u  x.  u ) )
229228negeqd 9708 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
u ^ 2 )  =  -u ( u  x.  u ) )
230227, 229eqtr4d 2495 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  -u u
)  =  -u (
u ^ 2 ) )
231230oveq1d 6208 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( u  x.  -u u
)  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
232225, 226, 2313eqtr2d 2498 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  x.  u )  =  ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
233223, 232oveq12d 6211 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  =  ( ( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
23465sqcld 12116 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  e.  CC )
235234negcld 9810 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
u ^ 2 )  e.  CC )
236235, 118, 209divcld 10211 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
237118, 236addcomd 9675 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
238233, 237eqtrd 2492 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  =  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) )
239238oveq2d 6209 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) ) )
2401182timesd 10671 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )
24168, 69negsubd 9829 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
1  +  -u (
u ^ 2 ) )  =  ( 1  -  ( u ^
2 ) ) )
24270sqsqrd 13036 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) ) ^ 2 )  =  ( 1  -  ( u ^ 2 ) ) )
24371sqvald 12115 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) ) ^ 2 )  =  ( ( sqr `  ( 1  -  (
u ^ 2 ) ) )  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
244241, 242, 2433eqtr2d 2498 . . . . . . . . . . . 12  |-  ( u  e.  CC  ->  (
1  +  -u (
u ^ 2 ) )  =  ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
24565, 244syl 16 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  +  -u (
u ^ 2 ) )  =  ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
246245oveq1d 6208 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  +  -u ( u ^ 2 ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  =  ( ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
24713a1i 11 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  1  e.  CC )
248247, 235, 118, 209divdird 10249 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  +  -u ( u ^ 2 ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  =  ( ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
249118, 118, 209divcan3d 10216 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( ( sqr `  (
1  -  ( u ^ 2 ) ) )  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  =  ( sqr `  ( 1  -  ( u ^
2 ) ) ) )
250246, 248, 2493eqtr3rd 2501 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
251250oveq1d 6208 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )
252118, 209reccld 10204 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
253252, 236, 118addassd 9512 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) ) )
254240, 251, 2533eqtrrd 2497 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
255239, 254eqtrd 2492 . . . . . 6  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
256255mpteq2ia 4475 . . . . 5  |-  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
257222, 256syl6eq 2508 . . . 4  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( (arcsin `  u )  +  ( u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
258 fveq2 5792 . . . . 5  |-  ( u  =  ( t  /  R )  ->  (arcsin `  u )  =  (arcsin `  ( t  /  R
) ) )
259 id 22 . . . . . 6  |-  ( u  =  ( t  /  R )  ->  u  =  ( t  /  R ) )
260 oveq1 6200 . . . . . . . 8  |-  ( u  =  ( t  /  R )  ->  (
u ^ 2 )  =  ( ( t  /  R ) ^
2 ) )
261260oveq2d 6209 . . . . . . 7  |-  ( u  =  ( t  /  R )  ->  (
1  -  ( u ^ 2 ) )  =  ( 1  -  ( ( t  /  R ) ^ 2 ) ) )
262261fveq2d 5796 . . . . . 6  |-  ( u  =  ( t  /  R )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
263259, 262oveq12d 6211 . . . . 5  |-  ( u  =  ( t  /  R )  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
264258, 263oveq12d 6211 . . . 4  |-  ( u  =  ( t  /  R )  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( (arcsin `  (
t  /  R ) )  +  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
265262oveq2d 6209 . . . 4  |-  ( u  =  ( t  /  R )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
2662, 2, 61, 63, 75, 77, 89, 257, 264, 265dvmptco 21572 . . 3  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  =  ( t  e.  ( -u R (,) R )  |->  ( ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) ) )
2676sqcld 12116 . . 3  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  CC )
2682, 19, 21, 266, 267dvmptcmul 21564 . 2  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( ( R ^ 2 )  x.  ( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) ) ) ) )
269 2cnd 10498 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
2  e.  CC )
270269, 17mulcld 9510 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
2716, 8reccld 10204 . . . . . . 7  |-  ( R  e.  RR+  ->  ( 1  /  R )  e.  CC )
272271adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  /  R
)  e.  CC )
273270, 272mulcomd 9511 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) )  =  ( ( 1  /  R )  x.  ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
274273oveq2d 6209 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) )  =  ( ( R ^ 2 )  x.  ( ( 1  /  R )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
275267adantr 465 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  e.  CC )
276275, 272, 270mulassd 9513 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( ( R ^ 2 )  x.  ( ( 1  /  R )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
2776sqvald 12115 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =  ( R  x.  R
) )
278277oveq1d 6208 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  /  R )  =  ( ( R  x.  R )  /  R
) )
279267, 6, 8divrecd 10214 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  /  R )  =  ( ( R ^
2 )  x.  (
1  /  R ) ) )
2806, 6, 8divcan3d 10216 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R  x.  R )  /  R )  =  R )
281278, 279, 2803eqtr3d 2500 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  x.  ( 1  /  R ) )  =  R )
282281adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  /  R ) )  =  R )
283282oveq1d 6208 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( R  x.  ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
2847, 269, 17mul12d 9682 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
28522resqcld 12144 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR )
286285adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  e.  RR )
28722sqge0d 12145 . . . . . . . . 9  |-  ( R  e.  RR+  ->  0  <_ 
( R ^ 2 ) )
288287adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <_  ( R ^ 2 ) )
28943a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
1  e.  RR )
2903adantl 466 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
t  e.  RR )
29122adantr 465 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  e.  RR )
292290, 291, 9redivcld 10263 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  RR )
293292resqcld 12144 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  RR )
294289, 293resubcld 9880 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  RR )
295160a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  e.  RR )
29628, 29absltd 13027 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  ( -u R  <  t  /\  t  < 
R ) ) )
29778abscld 13033 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
298297adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
29978absge0d 13041 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
300299adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
301 rpge0 11107 . . . . . . . . . . . . . . . . . 18  |-  ( R  e.  RR+  ->  0  <_  R )
302301adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  R )
303298, 29, 300, 302lt2sqd 12152 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  ( ( abs `  t ) ^
2 )  <  ( R ^ 2 ) ) )
304 absresq 12902 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
305304adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
306267adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  CC )
307306mulid1d 9507 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( R ^ 2 )  x.  1 )  =  ( R ^
2 ) )
308307eqcomd 2459 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  =  ( ( R ^
2 )  x.  1 ) )
309305, 308breq12d 4406 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( abs `  t
) ^ 2 )  <  ( R ^
2 )  <->  ( t ^ 2 )  < 
( ( R ^
2 )  x.  1 ) ) )
3106adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  CC )
31179, 310, 30sqdivd 12131 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  =  ( ( t ^ 2 )  / 
( R ^ 2 ) ) )
312311breq1d 4403 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <  1  <->  (
( t ^ 2 )  /  ( R ^ 2 ) )  <  1 ) )
31331resqcld 12144 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  e.  RR )
314313, 44posdifd 10030 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <  1  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
315 resqcl 12043 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
316315adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
317 rpgt0 11106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR+  ->  0  < 
R )
318160a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  0  e.  RR )
319 0le0 10515 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  <_  0
320319a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  0  <_ 
0 )
321318, 22, 320, 301lt2sqd 12152 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  ( 0 ^ 2 )  < 
( R ^ 2 ) ) )
322 sq0 12067 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0 ^ 2 )  =  0
323322a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( 0 ^ 2 )  =  0 )
324323breq1d 4403 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( ( 0 ^ 2 )  <  ( R ^
2 )  <->  0  <  ( R ^ 2 ) ) )
325321, 324bitrd 253 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  0  <  ( R ^ 2 ) ) )
326317, 325mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  RR+  ->  0  < 
( R ^ 2 ) )
327285, 326elrpd 11129 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR+ )
328327adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR+ )
329316, 44, 328ltdivmuld 11178 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <  1  <->  ( t ^ 2 )  < 
( ( R ^
2 )  x.  1 ) ) )
330312, 314, 3293bitr3rd 284 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <  ( ( R ^ 2 )  x.  1 )  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
331303, 309, 3303bitrd 279 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
332296, 331bitr3d 255 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  <->  0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
333332biimpd 207 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  0  <  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
334333exp4b 607 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <  t  -> 
( t  <  R  ->  0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )
3353343impd 1202 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <  t  /\  t  <  R )  -> 
0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
33627, 335sylbid 215 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  ->  0  <  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )
337336imp 429 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
338295, 294, 337ltled 9626 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
339286, 288, 294, 338sqrmuld 13022 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
340275, 14, 15subdid 9904 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( ( R ^ 2 )  x.  1 )  -  ( ( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) ) )
341275mulid1d 9507 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  1 )  =  ( R ^ 2 ) )
3425, 7, 9sqdivd 12131 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  =  ( ( t ^ 2 )  /  ( R ^
2 ) ) )
343342oveq2d 6209 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( ( R ^ 2 )  x.  ( ( t ^ 2 )  / 
( R ^ 2 ) ) ) )
3444sqcld 12116 . . . . . . . . . . . . 13  |-  ( t  e.  ( -u R (,) R )  ->  (
t ^ 2 )  e.  CC )
345344adantl 466 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t ^ 2 )  e.  CC )
346 sqne0 12042 . . . . . . . . . . . . . . 15  |-  ( R  e.  CC  ->  (
( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
3476, 346syl 16 . . . . . . . . . . . . . 14  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
3488, 347mpbird 232 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =/=  0 )
349348adantr 465 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  =/=  0 )
350345, 275, 349divcan2d 10213 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t ^ 2 )  /  ( R ^ 2 ) ) )  =  ( t ^ 2 ) )
351343, 350eqtrd 2492 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( t ^ 2 ) )
352341, 351oveq12d 6211 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  1 )  -  (
( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
353340, 352eqtrd 2492 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
354353fveq2d 5796 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
35522, 301sqrsqd 13017 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( sqr `  ( R ^ 2 ) )  =  R )
356355adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  ( R ^ 2 ) )  =  R )
357356oveq1d 6208 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )
358339, 354, 3573eqtr3rd 2501 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
359358oveq2d 6209 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 2  x.  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
360283, 284, 3593eqtrd 2496 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
361274, 276, 3603eqtr2d 2498 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
362361mpteq2dva 4479 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
363268, 362eqtrd 2492 1  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   _Vcvv 3071    i^i cin 3428    C_ wss 3429   {cpr 3980   class class class wbr 4393    |-> cmpt 4451   ran crn 4942    |` cres 4943   -->wf 5515   ` cfv 5519  (class class class)co 6193   CCcc 9384   RRcr 9385   0cc0 9386   1c1 9387    + caddc 9389    x. cmul 9391   RR*cxr 9521    < clt 9522    <_ cle 9523    - cmin 9699   -ucneg 9700    / cdiv 10097   NNcn 10426   2c2 10475   RR+crp 11095   (,)cioo 11404   ^cexp 11975   sqrcsqr 12833   abscabs 12834   TopOpenctopn 14471   topGenctg 14487  ℂfldccnfld 17936  TopOnctopon 18624    _D cdv 21464  arcsincasin 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-addf 9465  ax-mulf 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-er 7204  df-map 7319  df-pm 7320  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-fi 7765  df-sup 7795  df-oi 7828  df-card 8213  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ioc 11409  df-ico 11410  df-icc 11411  df-fz 11548  df-fzo 11659  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-fac 12162  df-bc 12189  df-hash 12214  df-shft 12667  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-limsup 13060  df-clim 13077  df-rlim 13078  df-sum 13275  df-ef 13464  df-sin 13466  df-cos 13467  df-tan 13468  df-pi 13469  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-starv 14364  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-unif 14372  df-hom 14373  df-cco 14374  df-rest 14472  df-topn 14473  df-0g 14491  df-gsum 14492  df-topgen 14493  df-pt 14494  df-prds 14497  df-xrs 14551  df-qtop 14556  df-imas 14557  df-xps 14559  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-fbas 17932  df-fg 17933  df-cnfld 17937  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-lp 18865  df-perf 18866  df-cn 18956  df-cnp 18957  df-haus 19044  df-cmp 19115  df-tx 19260  df-hmeo 19453  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-xms 20020  df-ms 20021  df-tms 20022  df-cncf 20579  df-limc 21467  df-dv 21468  df-log 22134  df-cxp 22135  df-asin 22386
This theorem is referenced by:  areacirc  28630
  Copyright terms: Public domain W3C validator