Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem1 Structured version   Unicode version

Theorem areacirclem1 28437
Description: Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem1  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
Distinct variable group:    t, R

Proof of Theorem areacirclem1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 9366 . . . 4  |-  RR  e.  { RR ,  CC }
21a1i 11 . . 3  |-  ( R  e.  RR+  ->  RR  e.  { RR ,  CC }
)
3 elioore 11322 . . . . . . . 8  |-  ( t  e.  ( -u R (,) R )  ->  t  e.  RR )
43recnd 9404 . . . . . . 7  |-  ( t  e.  ( -u R (,) R )  ->  t  e.  CC )
54adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
t  e.  CC )
6 rpcn 10991 . . . . . . 7  |-  ( R  e.  RR+  ->  R  e.  CC )
76adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  e.  CC )
8 rpne0 10998 . . . . . . 7  |-  ( R  e.  RR+  ->  R  =/=  0 )
98adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  =/=  0 )
105, 7, 9divcld 10099 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  CC )
11 asincl 22243 . . . . 5  |-  ( ( t  /  R )  e.  CC  ->  (arcsin `  ( t  /  R
) )  e.  CC )
1210, 11syl 16 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
(arcsin `  ( t  /  R ) )  e.  CC )
13 ax-1cn 9332 . . . . . . . 8  |-  1  e.  CC
1413a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
1  e.  CC )
1510sqcld 11998 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  CC )
1614, 15subcld 9711 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  CC )
1716sqrcld 12915 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  e.  CC )
1810, 17mulcld 9398 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
1912, 18addcld 9397 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( (arcsin `  (
t  /  R ) )  +  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )  e.  CC )
20 ovex 6111 . . . 4  |-  ( ( 2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )  x.  ( 1  /  R
) )  e.  _V
2120a1i 11 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) )  e.  _V )
22 rpre 10989 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  R  e.  RR )
2322renegcld 9767 . . . . . . . . 9  |-  ( R  e.  RR+  ->  -u R  e.  RR )
2423rexrd 9425 . . . . . . . 8  |-  ( R  e.  RR+  ->  -u R  e.  RR* )
25 rpxr 10990 . . . . . . . 8  |-  ( R  e.  RR+  ->  R  e. 
RR* )
26 elioo2 11333 . . . . . . . 8  |-  ( (
-u R  e.  RR*  /\  R  e.  RR* )  ->  ( t  e.  (
-u R (,) R
)  <->  ( t  e.  RR  /\  -u R  <  t  /\  t  < 
R ) ) )
2724, 25, 26syl2anc 661 . . . . . . 7  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  <->  ( t  e.  RR  /\  -u R  <  t  /\  t  < 
R ) ) )
28 simpr 461 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  RR )
2922adantr 465 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR )
308adantr 465 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  =/=  0 )
3128, 29, 30redivcld 10151 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  /  R )  e.  RR )
3231a1d 25 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( t  /  R )  e.  RR ) )
336mulm1d 9788 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  ( -u
1  x.  R )  =  -u R )
3433adantr 465 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u 1  x.  R )  =  -u R )
3534breq1d 4297 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u 1  x.  R
)  <  t  <->  -u R  < 
t ) )
36 neg1rr 10418 . . . . . . . . . . . . . . 15  |-  -u 1  e.  RR
3736a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  -u 1  e.  RR )
38 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  RR+ )
3937, 28, 38ltmuldivd 11062 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u 1  x.  R
)  <  t  <->  -u 1  < 
( t  /  R
) ) )
4035, 39bitr3d 255 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u R  <  t  <->  -u 1  < 
( t  /  R
) ) )
4140biimpd 207 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( -u R  <  t  ->  -u 1  <  ( t  /  R ) ) )
4241adantrd 468 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  -u 1  <  (
t  /  R ) ) )
43 1re 9377 . . . . . . . . . . . . . . 15  |-  1  e.  RR
4443a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  RR )
4528, 44, 38ltdivmuld 11066 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
)  <  1  <->  t  <  ( R  x.  1 ) ) )
466mulid1d 9395 . . . . . . . . . . . . . . 15  |-  ( R  e.  RR+  ->  ( R  x.  1 )  =  R )
4746adantr 465 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R  x.  1 )  =  R )
4847breq2d 4299 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  ( R  x.  1 )  <->  t  <  R ) )
4945, 48bitr2d 254 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  R  <->  ( t  /  R )  <  1
) )
5049biimpd 207 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t  <  R  ->  ( t  /  R )  <  1 ) )
5150adantld 467 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( t  /  R )  <  1
) )
5232, 42, 513jcad 1169 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) ) )
5352exp4b 607 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <  t  -> 
( t  <  R  ->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) ) ) )
54533impd 1201 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <  t  /\  t  <  R )  -> 
( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) )
5527, 54sylbid 215 . . . . . 6  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  ->  (
( t  /  R
)  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) ) )
5655imp 429 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R )  /\  ( t  /  R
)  <  1 ) )
5736rexri 9428 . . . . . 6  |-  -u 1  e.  RR*
5843rexri 9428 . . . . . 6  |-  1  e.  RR*
59 elioo2 11333 . . . . . 6  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( ( t  /  R )  e.  (
-u 1 (,) 1
)  <->  ( ( t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) ) )
6057, 58, 59mp2an 672 . . . . 5  |-  ( ( t  /  R )  e.  ( -u 1 (,) 1 )  <->  ( (
t  /  R )  e.  RR  /\  -u 1  <  ( t  /  R
)  /\  ( t  /  R )  <  1
) )
6156, 60sylibr 212 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  ( -u
1 (,) 1 ) )
62 ovex 6111 . . . . 5  |-  ( 1  /  R )  e. 
_V
6362a1i 11 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  /  R
)  e.  _V )
64 elioore 11322 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  u  e.  RR )
6564recnd 9404 . . . . . 6  |-  ( u  e.  ( -u 1 (,) 1 )  ->  u  e.  CC )
66 asincl 22243 . . . . . . 7  |-  ( u  e.  CC  ->  (arcsin `  u )  e.  CC )
67 id 22 . . . . . . . 8  |-  ( u  e.  CC  ->  u  e.  CC )
6813a1i 11 . . . . . . . . . 10  |-  ( u  e.  CC  ->  1  e.  CC )
69 sqcl 11920 . . . . . . . . . 10  |-  ( u  e.  CC  ->  (
u ^ 2 )  e.  CC )
7068, 69subcld 9711 . . . . . . . . 9  |-  ( u  e.  CC  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
7170sqrcld 12915 . . . . . . . 8  |-  ( u  e.  CC  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  e.  CC )
7267, 71mulcld 9398 . . . . . . 7  |-  ( u  e.  CC  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
7366, 72addcld 9397 . . . . . 6  |-  ( u  e.  CC  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
7465, 73syl 16 . . . . 5  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
7574adantl 466 . . . 4  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( (arcsin `  u
)  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  e.  CC )
76 ovex 6111 . . . . 5  |-  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
7776a1i 11 . . . 4  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
78 recn 9364 . . . . . . 7  |-  ( t  e.  RR  ->  t  e.  CC )
7978adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  t  e.  CC )
8013a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  1  e.  CC )
812dvmptid 21406 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  RR  |->  t ) )  =  ( t  e.  RR  |->  1 ) )
82 ioossre 11349 . . . . . . 7  |-  ( -u R (,) R )  C_  RR
8382a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  ( -u R (,) R )  C_  RR )
84 eqid 2438 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
8584tgioo2 20355 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
86 iooretop 20320 . . . . . . 7  |-  ( -u R (,) R )  e.  ( topGen `  ran  (,) )
8786a1i 11 . . . . . 6  |-  ( R  e.  RR+  ->  ( -u R (,) R )  e.  ( topGen `  ran  (,) )
)
882, 79, 80, 81, 83, 85, 84, 87dvmptres 21412 . . . . 5  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  t ) )  =  ( t  e.  ( -u R (,) R )  |->  1 ) )
892, 5, 14, 88, 6, 8dvmptdivc 21414 . . . 4  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( t  /  R ) ) )  =  ( t  e.  ( -u R (,) R )  |->  ( 1  /  R ) ) )
9065, 66syl 16 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (arcsin `  u )  e.  CC )
9190adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
(arcsin `  u )  e.  CC )
92 ovex 6111 . . . . . . 7  |-  ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
9392a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
94 dvreasin 28435 . . . . . . 7  |-  ( RR 
_D  (arcsin  |`  ( -u
1 (,) 1 ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
95 asinf 22242 . . . . . . . . . 10  |- arcsin : CC --> CC
9695a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  -> arcsin : CC --> CC )
97 ioossre 11349 . . . . . . . . . . 11  |-  ( -u
1 (,) 1 ) 
C_  RR
98 ax-resscn 9331 . . . . . . . . . . 11  |-  RR  C_  CC
9997, 98sstri 3360 . . . . . . . . . 10  |-  ( -u
1 (,) 1 ) 
C_  CC
10099a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 ) 
C_  CC )
10196, 100feqresmpt 5740 . . . . . . . 8  |-  ( R  e.  RR+  ->  (arcsin  |`  ( -u 1 (,) 1 ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) )
102101oveq2d 6102 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  (arcsin  |`  ( -u
1 (,) 1 ) ) )  =  ( RR  _D  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) ) )
10394, 102syl5reqr 2485 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  (arcsin `  u ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )
10465, 72syl 16 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
105104adantl 466 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( u  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  CC )
106 ovex 6111 . . . . . . 7  |-  ( ( 1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  e.  _V
107106a1i 11 . . . . . 6  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  e.  _V )
10865adantl 466 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  ->  u  e.  CC )
10913a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
1  e.  CC )
110 recn 9364 . . . . . . . . 9  |-  ( u  e.  RR  ->  u  e.  CC )
111110adantl 466 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  u  e.  CC )
11213a1i 11 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  1  e.  CC )
1132dvmptid 21406 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  u ) )  =  ( u  e.  RR  |->  1 ) )
11497a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 ) 
C_  RR )
115 iooretop 20320 . . . . . . . . 9  |-  ( -u
1 (,) 1 )  e.  ( topGen `  ran  (,) )
116115a1i 11 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( -u
1 (,) 1 )  e.  ( topGen `  ran  (,) ) )
1172, 111, 112, 113, 114, 85, 84, 116dvmptres 21412 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  u ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  1 ) )
11865, 71syl 16 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  e.  CC )
119118adantl 466 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( sqr `  (
1  -  ( u ^ 2 ) ) )  e.  CC )
120 ovex 6111 . . . . . . . 8  |-  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  e.  _V
121120a1i 11 . . . . . . 7  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  e.  _V )
12243a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  1  e.  RR )
12364resqcld 12026 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  e.  RR )
124122, 123resubcld 9768 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  RR )
125 elioo2 11333 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( u  e.  (
-u 1 (,) 1
)  <->  ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 ) ) )
12657, 58, 125mp2an 672 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  <->  ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 ) )
127 id 22 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  u  e.  RR )
12843a1i 11 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  1  e.  RR )
129127, 128absltd 12908 . . . . . . . . . . . . . . 15  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  ( -u 1  <  u  /\  u  <  1 ) ) )
130110abscld 12914 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  ( abs `  u )  e.  RR )
131110absge0d 12922 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  0  <_  ( abs `  u
) )
132 0le1 9855 . . . . . . . . . . . . . . . . . 18  |-  0  <_  1
133132a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  0  <_  1 )
134130, 128, 131, 133lt2sqd 12034 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  ( ( abs `  u ) ^
2 )  <  (
1 ^ 2 ) ) )
135 absresq 12783 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
( abs `  u
) ^ 2 )  =  ( u ^
2 ) )
136 sq1 11952 . . . . . . . . . . . . . . . . . 18  |-  ( 1 ^ 2 )  =  1
137136a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
1 ^ 2 )  =  1 )
138135, 137breq12d 4300 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( ( abs `  u
) ^ 2 )  <  ( 1 ^ 2 )  <->  ( u ^ 2 )  <  1 ) )
139 resqcl 11925 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  RR  ->  (
u ^ 2 )  e.  RR )
140139, 128posdifd 9918 . . . . . . . . . . . . . . . 16  |-  ( u  e.  RR  ->  (
( u ^ 2 )  <  1  <->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
141134, 138, 1403bitrd 279 . . . . . . . . . . . . . . 15  |-  ( u  e.  RR  ->  (
( abs `  u
)  <  1  <->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
142129, 141bitr3d 255 . . . . . . . . . . . . . 14  |-  ( u  e.  RR  ->  (
( -u 1  <  u  /\  u  <  1
)  <->  0  <  (
1  -  ( u ^ 2 ) ) ) )
143142biimpd 207 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  (
( -u 1  <  u  /\  u  <  1
)  ->  0  <  ( 1  -  ( u ^ 2 ) ) ) )
1441433impib 1185 . . . . . . . . . . . 12  |-  ( ( u  e.  RR  /\  -u 1  <  u  /\  u  <  1 )  -> 
0  <  ( 1  -  ( u ^
2 ) ) )
145126, 144sylbi 195 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  0  <  ( 1  -  (
u ^ 2 ) ) )
146124, 145elrpd 11017 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  RR+ )
147146adantl 466 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  -> 
( 1  -  (
u ^ 2 ) )  e.  RR+ )
148 negex 9600 . . . . . . . . . 10  |-  -u (
2  x.  u )  e.  _V
149148a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  u  e.  ( -u 1 (,) 1 ) )  ->  -u ( 2  x.  u
)  e.  _V )
150 rpcn 10991 . . . . . . . . . . 11  |-  ( v  e.  RR+  ->  v  e.  CC )
151150sqrcld 12915 . . . . . . . . . 10  |-  ( v  e.  RR+  ->  ( sqr `  v )  e.  CC )
152151adantl 466 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  v  e.  RR+ )  ->  ( sqr `  v )  e.  CC )
153 ovex 6111 . . . . . . . . . 10  |-  ( 1  /  ( 2  x.  ( sqr `  v
) ) )  e. 
_V
154153a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  v  e.  RR+ )  ->  (
1  /  ( 2  x.  ( sqr `  v
) ) )  e. 
_V )
15513a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  1  e.  CC )
156110sqcld 11998 . . . . . . . . . . . 12  |-  ( u  e.  RR  ->  (
u ^ 2 )  e.  CC )
157155, 156subcld 9711 . . . . . . . . . . 11  |-  ( u  e.  RR  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
158157adantl 466 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
159148a1i 11 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  -u (
2  x.  u )  e.  _V )
160 0re 9378 . . . . . . . . . . . . 13  |-  0  e.  RR
161160a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  0  e.  RR )
16213a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  1  e.  CC )
1632, 162dvmptc 21407 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  1 ) )  =  ( u  e.  RR  |->  0 ) )
164156adantl 466 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
u ^ 2 )  e.  CC )
165 ovex 6111 . . . . . . . . . . . . 13  |-  ( 2  x.  u )  e. 
_V
166165a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  u  e.  RR )  ->  (
2  x.  u )  e.  _V )
16784cnfldtopon 20337 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
168 toponmax 18508 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
169167, 168mp1i 12 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  CC  e.  ( TopOpen ` fld ) )
170 df-ss 3337 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  <->  ( RR  i^i  CC )  =  RR )
17198, 170mpbi 208 . . . . . . . . . . . . . 14  |-  ( RR 
i^i  CC )  =  RR
172171a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( RR 
i^i  CC )  =  RR )
17369adantl 466 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  u  e.  CC )  ->  (
u ^ 2 )  e.  CC )
174165a1i 11 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  u  e.  CC )  ->  (
2  x.  u )  e.  _V )
175 2nn 10471 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
176 dvexp 21402 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  NN  ->  ( CC  _D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  ( u ^ (
2  -  1 ) ) ) ) )
177175, 176ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  ( u ^ (
2  -  1 ) ) ) )
178 2m1e1 10428 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  -  1 )  =  1
179178oveq2i 6097 . . . . . . . . . . . . . . . . . 18  |-  ( u ^ ( 2  -  1 ) )  =  ( u ^ 1 )
180 exp1 11863 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  CC  ->  (
u ^ 1 )  =  u )
181179, 180syl5eq 2482 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  CC  ->  (
u ^ ( 2  -  1 ) )  =  u )
182181oveq2d 6102 . . . . . . . . . . . . . . . 16  |-  ( u  e.  CC  ->  (
2  x.  ( u ^ ( 2  -  1 ) ) )  =  ( 2  x.  u ) )
183182mpteq2ia 4369 . . . . . . . . . . . . . . 15  |-  ( u  e.  CC  |->  ( 2  x.  ( u ^
( 2  -  1 ) ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) )
184177, 183eqtri 2458 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) )
185184a1i 11 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( CC 
_D  ( u  e.  CC  |->  ( u ^
2 ) ) )  =  ( u  e.  CC  |->  ( 2  x.  u ) ) )
18684, 2, 169, 172, 173, 174, 185dvmptres3 21405 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( u ^
2 ) ) )  =  ( u  e.  RR  |->  ( 2  x.  u ) ) )
1872, 112, 161, 163, 164, 166, 186dvmptsub 21416 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( 1  -  ( u ^ 2 ) ) ) )  =  ( u  e.  RR  |->  ( 0  -  ( 2  x.  u
) ) ) )
188 df-neg 9590 . . . . . . . . . . . 12  |-  -u (
2  x.  u )  =  ( 0  -  ( 2  x.  u
) )
189188mpteq2i 4370 . . . . . . . . . . 11  |-  ( u  e.  RR  |->  -u (
2  x.  u ) )  =  ( u  e.  RR  |->  ( 0  -  ( 2  x.  u ) ) )
190187, 189syl6eqr 2488 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  RR  |->  ( 1  -  ( u ^ 2 ) ) ) )  =  ( u  e.  RR  |->  -u ( 2  x.  u ) ) )
1912, 158, 159, 190, 114, 85, 84, 116dvmptres 21412 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( 1  -  ( u ^
2 ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  -u (
2  x.  u ) ) )
192 dvsqr 22157 . . . . . . . . . 10  |-  ( RR 
_D  ( v  e.  RR+  |->  ( sqr `  v
) ) )  =  ( v  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  v ) ) ) )
193192a1i 11 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( RR 
_D  ( v  e.  RR+  |->  ( sqr `  v
) ) )  =  ( v  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  v ) ) ) ) )
194 fveq2 5686 . . . . . . . . 9  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  ( sqr `  v )  =  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )
195194oveq2d 6102 . . . . . . . . . 10  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  (
2  x.  ( sqr `  v ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
196195oveq2d 6102 . . . . . . . . 9  |-  ( v  =  ( 1  -  ( u ^ 2 ) )  ->  (
1  /  ( 2  x.  ( sqr `  v
) ) )  =  ( 1  /  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
1972, 2, 147, 149, 152, 154, 191, 193, 194, 196dvmptco 21421 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u
) ) ) )
198 2cnd 10386 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  2  e.  CC )
199198, 65mulneg2d 9790 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  -u u
)  =  -u (
2  x.  u ) )
200199oveq1d 6101 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 2  x.  -u u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( -u ( 2  x.  u )  / 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
20165negcld 9698 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u u  e.  CC )
202145gt0ne0d 9896 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  =/=  0 )
20365, 70syl 16 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  -  ( u ^ 2 ) )  e.  CC )
204203adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( 1  -  ( u ^ 2 ) )  e.  CC )
205 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )
206204, 205sqr00d 12919 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( -u
1 (,) 1 )  /\  ( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0 )  ->  ( 1  -  ( u ^ 2 ) )  =  0 )
207206ex 434 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  =  0  -> 
( 1  -  (
u ^ 2 ) )  =  0 ) )
208207necon3d 2641 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  -  (
u ^ 2 ) )  =/=  0  -> 
( sqr `  (
1  -  ( u ^ 2 ) ) )  =/=  0 ) )
209202, 208mpd 15 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =/=  0 )
210 2ne0 10406 . . . . . . . . . . . 12  |-  2  =/=  0
211210a1i 11 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  2  =/=  0 )
212201, 118, 198, 209, 211divcan5d 10125 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 2  x.  -u u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
213198, 65mulcld 9398 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  u )  e.  CC )
214213negcld 9698 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
2  x.  u )  e.  CC )
215198, 118mulcld 9398 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
216198, 118, 211, 209mulne0d 9980 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =/=  0 )
217214, 215, 216divrec2d 10103 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u ( 2  x.  u
)  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( ( 1  / 
( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  x.  -u (
2  x.  u ) ) )
218200, 212, 2173eqtr3rd 2479 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u ) )  =  ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
219218mpteq2ia 4369 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  x.  -u ( 2  x.  u
) ) )  =  ( u  e.  (
-u 1 (,) 1
)  |->  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
220197, 219syl6eq 2486 . . . . . . 7  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )
2212, 108, 109, 117, 119, 121, 220dvmptmul 21410 . . . . . 6  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) )
2222, 91, 93, 103, 105, 107, 221dvmptadd 21409 . . . . 5  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( (arcsin `  u )  +  ( u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) ) )
223118mulid2d 9396 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )
224201, 118, 209divcld 10099 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
225224, 65mulcomd 9399 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  x.  u )  =  ( u  x.  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
22665, 201, 118, 209divassd 10134 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( u  x.  -u u
)  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( u  x.  ( -u u  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
22765, 65mulneg2d 9790 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  -u u
)  =  -u (
u  x.  u ) )
22865sqvald 11997 . . . . . . . . . . . . . 14  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  =  ( u  x.  u ) )
229228negeqd 9596 . . . . . . . . . . . . 13  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
u ^ 2 )  =  -u ( u  x.  u ) )
230227, 229eqtr4d 2473 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u  x.  -u u
)  =  -u (
u ^ 2 ) )
231230oveq1d 6101 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( u  x.  -u u
)  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
232225, 226, 2313eqtr2d 2476 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( -u u  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  x.  u )  =  ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
233223, 232oveq12d 6104 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  =  ( ( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) )
23465sqcld 11998 . . . . . . . . . . . 12  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
u ^ 2 )  e.  CC )
235234negcld 9698 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  -u (
u ^ 2 )  e.  CC )
236235, 118, 209divcld 10099 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
237118, 236addcomd 9563 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )  =  ( ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
238233, 237eqtrd 2470 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) )  =  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) )
239238oveq2d 6102 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) ) )
2401182timesd 10559 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )
24168, 69negsubd 9717 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
1  +  -u (
u ^ 2 ) )  =  ( 1  -  ( u ^
2 ) ) )
24270sqsqrd 12917 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) ) ^ 2 )  =  ( 1  -  ( u ^ 2 ) ) )
24371sqvald 11997 . . . . . . . . . . . . 13  |-  ( u  e.  CC  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) ) ^ 2 )  =  ( ( sqr `  ( 1  -  (
u ^ 2 ) ) )  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
244241, 242, 2433eqtr2d 2476 . . . . . . . . . . . 12  |-  ( u  e.  CC  ->  (
1  +  -u (
u ^ 2 ) )  =  ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
24565, 244syl 16 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  +  -u (
u ^ 2 ) )  =  ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
246245oveq1d 6101 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  +  -u ( u ^ 2 ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  =  ( ( ( sqr `  ( 1  -  ( u ^
2 ) ) )  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
24713a1i 11 . . . . . . . . . . 11  |-  ( u  e.  ( -u 1 (,) 1 )  ->  1  e.  CC )
248247, 235, 118, 209divdird 10137 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  +  -u ( u ^ 2 ) )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  =  ( ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
249118, 118, 209divcan3d 10104 . . . . . . . . . 10  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( ( sqr `  (
1  -  ( u ^ 2 ) ) )  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  =  ( sqr `  ( 1  -  ( u ^
2 ) ) ) )
250246, 248, 2493eqtr3rd 2479 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
251250oveq1d 6101 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( sqr `  (
1  -  ( u ^ 2 ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( ( 1  /  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) )
252118, 209reccld 10092 . . . . . . . . 9  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
1  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  e.  CC )
253252, 236, 118addassd 9400 . . . . . . . 8  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  (
-u ( u ^
2 )  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )  +  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( 1  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( sqr `  ( 1  -  ( u ^
2 ) ) ) ) ) )
254240, 251, 2533eqtrrd 2475 . . . . . . 7  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( -u ( u ^ 2 )  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
255239, 254eqtrd 2470 . . . . . 6  |-  ( u  e.  ( -u 1 (,) 1 )  ->  (
( 1  /  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) )
256255mpteq2ia 4369 . . . . 5  |-  ( u  e.  ( -u 1 (,) 1 )  |->  ( ( 1  /  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  +  ( ( 1  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) )  +  ( ( -u u  / 
( sqr `  (
1  -  ( u ^ 2 ) ) ) )  x.  u
) ) ) )  =  ( u  e.  ( -u 1 (,) 1 )  |->  ( 2  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )
257222, 256syl6eq 2486 . . . 4  |-  ( R  e.  RR+  ->  ( RR 
_D  ( u  e.  ( -u 1 (,) 1 )  |->  ( (arcsin `  u )  +  ( u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) ) ) ) )  =  ( u  e.  ( -u
1 (,) 1 ) 
|->  ( 2  x.  ( sqr `  ( 1  -  ( u ^ 2 ) ) ) ) ) )
258 fveq2 5686 . . . . 5  |-  ( u  =  ( t  /  R )  ->  (arcsin `  u )  =  (arcsin `  ( t  /  R
) ) )
259 id 22 . . . . . 6  |-  ( u  =  ( t  /  R )  ->  u  =  ( t  /  R ) )
260 oveq1 6093 . . . . . . . 8  |-  ( u  =  ( t  /  R )  ->  (
u ^ 2 )  =  ( ( t  /  R ) ^
2 ) )
261260oveq2d 6102 . . . . . . 7  |-  ( u  =  ( t  /  R )  ->  (
1  -  ( u ^ 2 ) )  =  ( 1  -  ( ( t  /  R ) ^ 2 ) ) )
262261fveq2d 5690 . . . . . 6  |-  ( u  =  ( t  /  R )  ->  ( sqr `  ( 1  -  ( u ^ 2 ) ) )  =  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
263259, 262oveq12d 6104 . . . . 5  |-  ( u  =  ( t  /  R )  ->  (
u  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( ( t  /  R )  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
264258, 263oveq12d 6104 . . . 4  |-  ( u  =  ( t  /  R )  ->  (
(arcsin `  u )  +  ( u  x.  ( sqr `  (
1  -  ( u ^ 2 ) ) ) ) )  =  ( (arcsin `  (
t  /  R ) )  +  ( ( t  /  R )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
265262oveq2d 6102 . . . 4  |-  ( u  =  ( t  /  R )  ->  (
2  x.  ( sqr `  ( 1  -  (
u ^ 2 ) ) ) )  =  ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
2662, 2, 61, 63, 75, 77, 89, 257, 264, 265dvmptco 21421 . . 3  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )  =  ( t  e.  ( -u R (,) R )  |->  ( ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) ) )
2676sqcld 11998 . . 3  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  CC )
2682, 19, 21, 266, 267dvmptcmul 21413 . 2  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( ( R ^ 2 )  x.  ( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) ) ) ) )
269 2cnd 10386 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
2  e.  CC )
270269, 17mulcld 9398 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  e.  CC )
2716, 8reccld 10092 . . . . . . 7  |-  ( R  e.  RR+  ->  ( 1  /  R )  e.  CC )
272271adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  /  R
)  e.  CC )
273270, 272mulcomd 9399 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) )  =  ( ( 1  /  R )  x.  ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
274273oveq2d 6102 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) )  =  ( ( R ^ 2 )  x.  ( ( 1  /  R )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
275267adantr 465 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  e.  CC )
276275, 272, 270mulassd 9401 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( ( R ^ 2 )  x.  ( ( 1  /  R )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) )
2776sqvald 11997 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =  ( R  x.  R
) )
278277oveq1d 6101 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  /  R )  =  ( ( R  x.  R )  /  R
) )
279267, 6, 8divrecd 10102 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  /  R )  =  ( ( R ^
2 )  x.  (
1  /  R ) ) )
2806, 6, 8divcan3d 10104 . . . . . . . 8  |-  ( R  e.  RR+  ->  ( ( R  x.  R )  /  R )  =  R )
281278, 279, 2803eqtr3d 2478 . . . . . . 7  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  x.  ( 1  /  R ) )  =  R )
282281adantr 465 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  /  R ) )  =  R )
283282oveq1d 6101 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( R  x.  ( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
2847, 269, 17mul12d 9570 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) ) ) )
28522resqcld 12026 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR )
286285adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  e.  RR )
28722sqge0d 12027 . . . . . . . . 9  |-  ( R  e.  RR+  ->  0  <_ 
( R ^ 2 ) )
288287adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <_  ( R ^ 2 ) )
28943a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
1  e.  RR )
2903adantl 466 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
t  e.  RR )
29122adantr 465 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  ->  R  e.  RR )
292290, 291, 9redivcld 10151 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t  /  R
)  e.  RR )
293292resqcld 12026 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  e.  RR )
294289, 293resubcld 9768 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 1  -  (
( t  /  R
) ^ 2 ) )  e.  RR )
295160a1i 11 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  e.  RR )
29628, 29absltd 12908 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  ( -u R  <  t  /\  t  < 
R ) ) )
29778abscld 12914 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  ( abs `  t )  e.  RR )
298297adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( abs `  t )  e.  RR )
29978absge0d 12922 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  0  <_  ( abs `  t
) )
300299adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  ( abs `  t
) )
301 rpge0 10995 . . . . . . . . . . . . . . . . . 18  |-  ( R  e.  RR+  ->  0  <_  R )
302301adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  0  <_  R )
303298, 29, 300, 302lt2sqd 12034 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  ( ( abs `  t ) ^
2 )  <  ( R ^ 2 ) ) )
304 absresq 12783 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  RR  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
305304adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
) ^ 2 )  =  ( t ^
2 ) )
306267adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  CC )
307306mulid1d 9395 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( R ^ 2 )  x.  1 )  =  ( R ^
2 ) )
308307eqcomd 2443 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  =  ( ( R ^
2 )  x.  1 ) )
309305, 308breq12d 4300 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( abs `  t
) ^ 2 )  <  ( R ^
2 )  <->  ( t ^ 2 )  < 
( ( R ^
2 )  x.  1 ) ) )
3106adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  R  e.  CC )
31179, 310, 30sqdivd 12013 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  =  ( ( t ^ 2 )  / 
( R ^ 2 ) ) )
312311breq1d 4297 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <  1  <->  (
( t ^ 2 )  /  ( R ^ 2 ) )  <  1 ) )
31331resqcld 12026 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t  /  R
) ^ 2 )  e.  RR )
314313, 44posdifd 9918 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t  /  R ) ^ 2 )  <  1  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
315 resqcl 11925 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
316315adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
t ^ 2 )  e.  RR )
317 rpgt0 10994 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR+  ->  0  < 
R )
318160a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  0  e.  RR )
319 0le0 10403 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  <_  0
320319a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  0  <_ 
0 )
321318, 22, 320, 301lt2sqd 12034 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  ( 0 ^ 2 )  < 
( R ^ 2 ) ) )
322 sq0 11949 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0 ^ 2 )  =  0
323322a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  RR+  ->  ( 0 ^ 2 )  =  0 )
324323breq1d 4297 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR+  ->  ( ( 0 ^ 2 )  <  ( R ^
2 )  <->  0  <  ( R ^ 2 ) ) )
325321, 324bitrd 253 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR+  ->  ( 0  <  R  <->  0  <  ( R ^ 2 ) ) )
326317, 325mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  RR+  ->  0  < 
( R ^ 2 ) )
327285, 326elrpd 11017 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  RR+  ->  ( R ^ 2 )  e.  RR+ )
328327adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  ( R ^ 2 )  e.  RR+ )
329316, 44, 328ltdivmuld 11066 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( ( t ^
2 )  /  ( R ^ 2 ) )  <  1  <->  ( t ^ 2 )  < 
( ( R ^
2 )  x.  1 ) ) )
330312, 314, 3293bitr3rd 284 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( t ^ 2 )  <  ( ( R ^ 2 )  x.  1 )  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
331303, 309, 3303bitrd 279 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( abs `  t
)  <  R  <->  0  <  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )
332296, 331bitr3d 255 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  <->  0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
333332biimpd 207 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR+  /\  t  e.  RR )  ->  (
( -u R  <  t  /\  t  <  R )  ->  0  <  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )
334333exp4b 607 . . . . . . . . . . . 12  |-  ( R  e.  RR+  ->  ( t  e.  RR  ->  ( -u R  <  t  -> 
( t  <  R  ->  0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) ) ) )
3353343impd 1201 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  ( ( t  e.  RR  /\  -u R  <  t  /\  t  <  R )  -> 
0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )
33627, 335sylbid 215 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  ->  0  <  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) )
337336imp 429 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
338295, 294, 337ltled 9514 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
0  <_  ( 1  -  ( ( t  /  R ) ^
2 ) ) )
339286, 288, 294, 338sqrmuld 12903 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) ) )
340275, 14, 15subdid 9792 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( ( R ^ 2 )  x.  1 )  -  ( ( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) ) )
341275mulid1d 9395 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  1 )  =  ( R ^ 2 ) )
3425, 7, 9sqdivd 12013 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( t  /  R ) ^ 2 )  =  ( ( t ^ 2 )  /  ( R ^
2 ) ) )
343342oveq2d 6102 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( ( R ^ 2 )  x.  ( ( t ^ 2 )  / 
( R ^ 2 ) ) ) )
3444sqcld 11998 . . . . . . . . . . . . 13  |-  ( t  e.  ( -u R (,) R )  ->  (
t ^ 2 )  e.  CC )
345344adantl 466 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( t ^ 2 )  e.  CC )
346 sqne0 11924 . . . . . . . . . . . . . . 15  |-  ( R  e.  CC  ->  (
( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
3476, 346syl 16 . . . . . . . . . . . . . 14  |-  ( R  e.  RR+  ->  ( ( R ^ 2 )  =/=  0  <->  R  =/=  0 ) )
3488, 347mpbird 232 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  ( R ^ 2 )  =/=  0 )
349348adantr 465 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R ^ 2 )  =/=  0 )
350345, 275, 349divcan2d 10101 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t ^ 2 )  /  ( R ^ 2 ) ) )  =  ( t ^ 2 ) )
351343, 350eqtrd 2470 . . . . . . . . . 10  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( t  /  R
) ^ 2 ) )  =  ( t ^ 2 ) )
352341, 351oveq12d 6104 . . . . . . . . 9  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  1 )  -  (
( R ^ 2 )  x.  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
353340, 352eqtrd 2470 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
1  -  ( ( t  /  R ) ^ 2 ) ) )  =  ( ( R ^ 2 )  -  ( t ^
2 ) ) )
354353fveq2d 5690 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  (
( R ^ 2 )  x.  ( 1  -  ( ( t  /  R ) ^
2 ) ) ) )  =  ( sqr `  ( ( R ^
2 )  -  (
t ^ 2 ) ) ) )
35522, 301sqrsqd 12898 . . . . . . . . 9  |-  ( R  e.  RR+  ->  ( sqr `  ( R ^ 2 ) )  =  R )
356355adantr 465 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( sqr `  ( R ^ 2 ) )  =  R )
357356oveq1d 6101 . . . . . . 7  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( sqr `  ( R ^ 2 ) )  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )
358339, 354, 3573eqtr3rd 2479 . . . . . 6  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( R  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  =  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) )
359358oveq2d 6102 . . . . 5  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( 2  x.  ( R  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
360283, 284, 3593eqtrd 2474 . . . 4  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( ( R ^ 2 )  x.  ( 1  /  R
) )  x.  (
2  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
361274, 276, 3603eqtr2d 2476 . . 3  |-  ( ( R  e.  RR+  /\  t  e.  ( -u R (,) R ) )  -> 
( ( R ^
2 )  x.  (
( 2  x.  ( sqr `  ( 1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  ( 1  /  R ) ) )  =  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) )
362361mpteq2dva 4373 . 2  |-  ( R  e.  RR+  ->  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( ( 2  x.  ( sqr `  (
1  -  ( ( t  /  R ) ^ 2 ) ) ) )  x.  (
1  /  R ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
363268, 362eqtrd 2470 1  |-  ( R  e.  RR+  ->  ( RR 
_D  ( t  e.  ( -u R (,) R )  |->  ( ( R ^ 2 )  x.  ( (arcsin `  ( t  /  R
) )  +  ( ( t  /  R
)  x.  ( sqr `  ( 1  -  (
( t  /  R
) ^ 2 ) ) ) ) ) ) ) )  =  ( t  e.  (
-u R (,) R
)  |->  ( 2  x.  ( sqr `  (
( R ^ 2 )  -  ( t ^ 2 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   _Vcvv 2967    i^i cin 3322    C_ wss 3323   {cpr 3874   class class class wbr 4287    e. cmpt 4345   ran crn 4836    |` cres 4837   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588    / cdiv 9985   NNcn 10314   2c2 10363   RR+crp 10983   (,)cioo 11292   ^cexp 11857   sqrcsqr 12714   abscabs 12715   TopOpenctopn 14352   topGenctg 14368  ℂfldccnfld 17793  TopOnctopon 18474    _D cdv 21313  arcsincasin 22232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-tan 13349  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-cmp 18965  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-limc 21316  df-dv 21317  df-log 21983  df-cxp 21984  df-asin 22235
This theorem is referenced by:  areacirc  28442
  Copyright terms: Public domain W3C validator