MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Unicode version

Theorem archnq 9253
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  <. x ,  1o >. )
Distinct variable group:    x, A

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 9198 . . . 4  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
2 xp1st 6709 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
31, 2syl 16 . . 3  |-  ( A  e.  Q.  ->  ( 1st `  A )  e. 
N. )
4 1pi 9156 . . 3  |-  1o  e.  N.
5 addclpi 9165 . . 3  |-  ( ( ( 1st `  A
)  e.  N.  /\  1o  e.  N. )  -> 
( ( 1st `  A
)  +N  1o )  e.  N. )
63, 4, 5sylancl 662 . 2  |-  ( A  e.  Q.  ->  (
( 1st `  A
)  +N  1o )  e.  N. )
7 xp2nd 6710 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
81, 7syl 16 . . . . 5  |-  ( A  e.  Q.  ->  ( 2nd `  A )  e. 
N. )
9 mulclpi 9166 . . . . 5  |-  ( ( ( ( 1st `  A
)  +N  1o )  e.  N.  /\  ( 2nd `  A )  e. 
N. )  ->  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  e.  N. )
106, 8, 9syl2anc 661 . . . 4  |-  ( A  e.  Q.  ->  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  e.  N. )
11 eqid 2451 . . . . . . 7  |-  ( ( 1st `  A )  +N  1o )  =  ( ( 1st `  A
)  +N  1o )
12 oveq2 6201 . . . . . . . . 9  |-  ( x  =  1o  ->  (
( 1st `  A
)  +N  x )  =  ( ( 1st `  A )  +N  1o ) )
1312eqeq1d 2453 . . . . . . . 8  |-  ( x  =  1o  ->  (
( ( 1st `  A
)  +N  x )  =  ( ( 1st `  A )  +N  1o ) 
<->  ( ( 1st `  A
)  +N  1o )  =  ( ( 1st `  A )  +N  1o ) ) )
1413rspcev 3172 . . . . . . 7  |-  ( ( 1o  e.  N.  /\  ( ( 1st `  A
)  +N  1o )  =  ( ( 1st `  A )  +N  1o ) )  ->  E. x  e.  N.  ( ( 1st `  A )  +N  x
)  =  ( ( 1st `  A )  +N  1o ) )
154, 11, 14mp2an 672 . . . . . 6  |-  E. x  e.  N.  ( ( 1st `  A )  +N  x
)  =  ( ( 1st `  A )  +N  1o )
16 ltexpi 9175 . . . . . 6  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( ( 1st `  A
)  +N  1o )  e.  N. )  -> 
( ( 1st `  A
)  <N  ( ( 1st `  A )  +N  1o ) 
<->  E. x  e.  N.  ( ( 1st `  A
)  +N  x )  =  ( ( 1st `  A )  +N  1o ) ) )
1715, 16mpbiri 233 . . . . 5  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( ( 1st `  A
)  +N  1o )  e.  N. )  -> 
( 1st `  A
)  <N  ( ( 1st `  A )  +N  1o ) )
183, 6, 17syl2anc 661 . . . 4  |-  ( A  e.  Q.  ->  ( 1st `  A )  <N 
( ( 1st `  A
)  +N  1o ) )
19 nlt1pi 9179 . . . . 5  |-  -.  ( 2nd `  A )  <N  1o
20 ltmpi 9177 . . . . . . 7  |-  ( ( ( 1st `  A
)  +N  1o )  e.  N.  ->  (
( 2nd `  A
)  <N  1o  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( ( 1st `  A
)  +N  1o )  .N  1o ) ) )
216, 20syl 16 . . . . . 6  |-  ( A  e.  Q.  ->  (
( 2nd `  A
)  <N  1o  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( ( 1st `  A
)  +N  1o )  .N  1o ) ) )
22 mulidpi 9159 . . . . . . . 8  |-  ( ( ( 1st `  A
)  +N  1o )  e.  N.  ->  (
( ( 1st `  A
)  +N  1o )  .N  1o )  =  ( ( 1st `  A
)  +N  1o ) )
236, 22syl 16 . . . . . . 7  |-  ( A  e.  Q.  ->  (
( ( 1st `  A
)  +N  1o )  .N  1o )  =  ( ( 1st `  A
)  +N  1o ) )
2423breq2d 4405 . . . . . 6  |-  ( A  e.  Q.  ->  (
( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( ( 1st `  A
)  +N  1o )  .N  1o )  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) ) )
2521, 24bitrd 253 . . . . 5  |-  ( A  e.  Q.  ->  (
( 2nd `  A
)  <N  1o  <->  ( (
( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) ) )
2619, 25mtbii 302 . . . 4  |-  ( A  e.  Q.  ->  -.  ( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) )
27 ltsopi 9161 . . . . 5  |-  <N  Or  N.
28 ltrelpi 9162 . . . . 5  |-  <N  C_  ( N.  X.  N. )
2927, 28sotri3 5329 . . . 4  |-  ( ( ( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) )  e.  N.  /\  ( 1st `  A
)  <N  ( ( 1st `  A )  +N  1o )  /\  -.  ( ( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )  <N  (
( 1st `  A
)  +N  1o ) )  ->  ( 1st `  A )  <N  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) )
3010, 18, 26, 29syl3anc 1219 . . 3  |-  ( A  e.  Q.  ->  ( 1st `  A )  <N 
( ( ( 1st `  A )  +N  1o )  .N  ( 2nd `  A
) ) )
31 pinq 9200 . . . . . 6  |-  ( ( ( 1st `  A
)  +N  1o )  e.  N.  ->  <. (
( 1st `  A
)  +N  1o ) ,  1o >.  e.  Q. )
326, 31syl 16 . . . . 5  |-  ( A  e.  Q.  ->  <. (
( 1st `  A
)  +N  1o ) ,  1o >.  e.  Q. )
33 ordpinq 9216 . . . . 5  |-  ( ( A  e.  Q.  /\  <.
( ( 1st `  A
)  +N  1o ) ,  1o >.  e.  Q. )  ->  ( A  <Q  <.
( ( 1st `  A
)  +N  1o ) ,  1o >.  <->  ( ( 1st `  A )  .N  ( 2nd `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)  <N  ( ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) ) ) )
3432, 33mpdan 668 . . . 4  |-  ( A  e.  Q.  ->  ( A  <Q  <. ( ( 1st `  A )  +N  1o ) ,  1o >.  <->  ( ( 1st `  A )  .N  ( 2nd `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)  <N  ( ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) ) ) )
35 ovex 6218 . . . . . . . 8  |-  ( ( 1st `  A )  +N  1o )  e. 
_V
364elexi 3081 . . . . . . . 8  |-  1o  e.  _V
3735, 36op2nd 6689 . . . . . . 7  |-  ( 2nd `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  =  1o
3837oveq2i 6204 . . . . . 6  |-  ( ( 1st `  A )  .N  ( 2nd `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)  =  ( ( 1st `  A )  .N  1o )
39 mulidpi 9159 . . . . . . 7  |-  ( ( 1st `  A )  e.  N.  ->  (
( 1st `  A
)  .N  1o )  =  ( 1st `  A
) )
403, 39syl 16 . . . . . 6  |-  ( A  e.  Q.  ->  (
( 1st `  A
)  .N  1o )  =  ( 1st `  A
) )
4138, 40syl5eq 2504 . . . . 5  |-  ( A  e.  Q.  ->  (
( 1st `  A
)  .N  ( 2nd `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )
)  =  ( 1st `  A ) )
4235, 36op1st 6688 . . . . . . 7  |-  ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  =  ( ( 1st `  A )  +N  1o )
4342oveq1i 6203 . . . . . 6  |-  ( ( 1st `  <. (
( 1st `  A
)  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) )  =  ( ( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) )
4443a1i 11 . . . . 5  |-  ( A  e.  Q.  ->  (
( 1st `  <. ( ( 1st `  A
)  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) )  =  ( ( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) )
4541, 44breq12d 4406 . . . 4  |-  ( A  e.  Q.  ->  (
( ( 1st `  A
)  .N  ( 2nd `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )
)  <N  ( ( 1st `  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )  .N  ( 2nd `  A
) )  <->  ( 1st `  A )  <N  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) ) )
4634, 45bitrd 253 . . 3  |-  ( A  e.  Q.  ->  ( A  <Q  <. ( ( 1st `  A )  +N  1o ) ,  1o >.  <->  ( 1st `  A )  <N  (
( ( 1st `  A
)  +N  1o )  .N  ( 2nd `  A
) ) ) )
4730, 46mpbird 232 . 2  |-  ( A  e.  Q.  ->  A  <Q 
<. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
48 opeq1 4160 . . . 4  |-  ( x  =  ( ( 1st `  A )  +N  1o )  ->  <. x ,  1o >.  =  <. ( ( 1st `  A )  +N  1o ) ,  1o >. )
4948breq2d 4405 . . 3  |-  ( x  =  ( ( 1st `  A )  +N  1o )  ->  ( A  <Q  <.
x ,  1o >.  <->  A  <Q 
<. ( ( 1st `  A
)  +N  1o ) ,  1o >. )
)
5049rspcev 3172 . 2  |-  ( ( ( ( 1st `  A
)  +N  1o )  e.  N.  /\  A  <Q 
<. ( ( 1st `  A
)  +N  1o ) ,  1o >. )  ->  E. x  e.  N.  A  <Q  <. x ,  1o >. )
516, 47, 50syl2anc 661 1  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  <. x ,  1o >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   E.wrex 2796   <.cop 3984   class class class wbr 4393    X. cxp 4939   ` cfv 5519  (class class class)co 6193   1stc1st 6678   2ndc2nd 6679   1oc1o 7016   N.cnpi 9115    +N cpli 9116    .N cmi 9117    <N clti 9118   Q.cnq 9123    <Q cltq 9129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-omul 7028  df-ni 9145  df-pli 9146  df-mi 9147  df-lti 9148  df-ltpq 9183  df-nq 9185  df-ltnq 9191
This theorem is referenced by:  prlem934  9306
  Copyright terms: Public domain W3C validator