Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabl Structured version   Unicode version

Theorem archiabl 28528
Description: Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
archiabl  |-  ( ( W  e. oGrp  /\  (oppg `  W
)  e. oGrp  /\  W  e. Archi
)  ->  W  e.  Abel )

Proof of Theorem archiabl
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2423 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2423 . . . . 5  |-  ( 0g
`  W )  =  ( 0g `  W
)
3 eqid 2423 . . . . 5  |-  ( le
`  W )  =  ( le `  W
)
4 eqid 2423 . . . . 5  |-  ( lt
`  W )  =  ( lt `  W
)
5 eqid 2423 . . . . 5  |-  (.g `  W
)  =  (.g `  W
)
6 simpll1 1045 . . . . 5  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  ->  W  e. oGrp )
7 simpll3 1047 . . . . 5  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  ->  W  e. Archi )
8 simplr 761 . . . . 5  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  -> 
v  e.  ( Base `  W ) )
9 simprl 763 . . . . 5  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  -> 
( 0g `  W
) ( lt `  W ) v )
10 simp2 1007 . . . . . 6  |-  ( ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  /\  y  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) y )  ->  y  e.  ( Base `  W
) )
11 simp1rr 1072 . . . . . 6  |-  ( ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  /\  y  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) y )  ->  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) )
12 simp3 1008 . . . . . 6  |-  ( ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  /\  y  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) y )  ->  ( 0g `  W ) ( lt `  W ) y )
13 breq2 4433 . . . . . . . 8  |-  ( x  =  y  ->  (
( 0g `  W
) ( lt `  W ) x  <->  ( 0g `  W ) ( lt
`  W ) y ) )
14 breq2 4433 . . . . . . . 8  |-  ( x  =  y  ->  (
v ( le `  W ) x  <->  v ( le `  W ) y ) )
1513, 14imbi12d 322 . . . . . . 7  |-  ( x  =  y  ->  (
( ( 0g `  W ) ( lt
`  W ) x  ->  v ( le
`  W ) x )  <->  ( ( 0g
`  W ) ( lt `  W ) y  ->  v ( le `  W ) y ) ) )
1615rspcv 3184 . . . . . 6  |-  ( y  e.  ( Base `  W
)  ->  ( A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  v
( le `  W
) x )  -> 
( ( 0g `  W ) ( lt
`  W ) y  ->  v ( le
`  W ) y ) ) )
1710, 11, 12, 16syl3c 64 . . . . 5  |-  ( ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  /\  y  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) y )  ->  v
( le `  W
) y )
181, 2, 3, 4, 5, 6, 7, 8, 9, 17archiabllem1 28523 . . . 4  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  v  e.  ( Base `  W ) )  /\  ( ( 0g `  W ) ( lt
`  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )  ->  W  e.  Abel )
1918adantllr 724 . . 3  |-  ( ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  /\  v  e.  ( Base `  W
) )  /\  (
( 0g `  W
) ( lt `  W ) v  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  v
( le `  W
) x ) ) )  ->  W  e.  Abel )
20 simpr 463 . . . 4  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  E. u  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )
21 breq2 4433 . . . . . 6  |-  ( u  =  v  ->  (
( 0g `  W
) ( lt `  W ) u  <->  ( 0g `  W ) ( lt
`  W ) v ) )
22 breq1 4432 . . . . . . . 8  |-  ( u  =  v  ->  (
u ( le `  W ) x  <->  v ( le `  W ) x ) )
2322imbi2d 318 . . . . . . 7  |-  ( u  =  v  ->  (
( ( 0g `  W ) ( lt
`  W ) x  ->  u ( le
`  W ) x )  <->  ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )
2423ralbidv 2866 . . . . . 6  |-  ( u  =  v  ->  ( A. x  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  ->  u ( le `  W ) x )  <->  A. x  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  -> 
v ( le `  W ) x ) ) )
2521, 24anbi12d 716 . . . . 5  |-  ( u  =  v  ->  (
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) )  <->  ( ( 0g `  W ) ( lt `  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) ) )
2625cbvrexv 3060 . . . 4  |-  ( E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) )  <->  E. v  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) v  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  v
( le `  W
) x ) ) )
2720, 26sylib 200 . . 3  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  E. v  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) v  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  v ( le `  W ) x ) ) )
2819, 27r19.29a 2972 . 2  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  W  e.  Abel )
29 simpl1 1009 . . 3  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  W  e. oGrp )
30 simpl3 1011 . . 3  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  W  e. Archi )
31 eqid 2423 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
32 simpl2 1010 . . 3  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  (oppg
`  W )  e. oGrp
)
33 simpr 463 . . . . . . . . . 10  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  -.  E. u  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )
34 ralnex 2873 . . . . . . . . . 10  |-  ( A. u  e.  ( Base `  W )  -.  (
( 0g `  W
) ( lt `  W ) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) )  <->  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )
3533, 34sylibr 216 . . . . . . . . 9  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  A. u  e.  ( Base `  W
)  -.  ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )
36 rexanali 2880 . . . . . . . . . . . 12  |-  ( E. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  /\  -.  u ( le `  W ) x )  <->  -.  A. x  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) x  ->  u ( le
`  W ) x ) )
3736imbi2i 314 . . . . . . . . . . 11  |-  ( ( ( 0g `  W
) ( lt `  W ) u  ->  E. x  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  /\  -.  u ( le `  W ) x ) )  <->  ( ( 0g
`  W ) ( lt `  W ) u  ->  -.  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )
38 imnan 424 . . . . . . . . . . 11  |-  ( ( ( 0g `  W
) ( lt `  W ) u  ->  -.  A. x  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) x  ->  u ( le
`  W ) x ) )  <->  -.  (
( 0g `  W
) ( lt `  W ) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )
3937, 38bitri 253 . . . . . . . . . 10  |-  ( ( ( 0g `  W
) ( lt `  W ) u  ->  E. x  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  /\  -.  u ( le `  W ) x ) )  <->  -.  ( ( 0g `  W ) ( lt `  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )
4039ralbii 2858 . . . . . . . . 9  |-  ( A. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  ->  E. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  /\  -.  u
( le `  W
) x ) )  <->  A. u  e.  ( Base `  W )  -.  ( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )
4135, 40sylibr 216 . . . . . . . 8  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  A. u  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) u  ->  E. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  /\  -.  u
( le `  W
) x ) ) )
4222notbid 296 . . . . . . . . . . . 12  |-  ( u  =  v  ->  ( -.  u ( le `  W ) x  <->  -.  v
( le `  W
) x ) )
4342anbi2d 709 . . . . . . . . . . 11  |-  ( u  =  v  ->  (
( ( 0g `  W ) ( lt
`  W ) x  /\  -.  u ( le `  W ) x )  <->  ( ( 0g `  W ) ( lt `  W ) x  /\  -.  v
( le `  W
) x ) ) )
4443rexbidv 2941 . . . . . . . . . 10  |-  ( u  =  v  ->  ( E. x  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  /\  -.  u ( le `  W ) x )  <->  E. x  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  /\  -.  v ( le `  W ) x ) ) )
4521, 44imbi12d 322 . . . . . . . . 9  |-  ( u  =  v  ->  (
( ( 0g `  W ) ( lt
`  W ) u  ->  E. x  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) x  /\  -.  u ( le `  W ) x ) )  <->  ( ( 0g `  W ) ( lt `  W ) v  ->  E. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  /\  -.  v
( le `  W
) x ) ) ) )
4645cbvralv 3059 . . . . . . . 8  |-  ( A. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  ->  E. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  /\  -.  u
( le `  W
) x ) )  <->  A. v  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) v  ->  E. x  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  /\  -.  v ( le `  W ) x ) ) )
4741, 46sylib 200 . . . . . . 7  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  A. v  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) v  ->  E. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  /\  -.  v
( le `  W
) x ) ) )
4847r19.21bi 2796 . . . . . 6  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W ) )  -> 
( ( 0g `  W ) ( lt
`  W ) v  ->  E. x  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) x  /\  -.  v ( le `  W ) x ) ) )
4914notbid 296 . . . . . . . 8  |-  ( x  =  y  ->  ( -.  v ( le `  W ) x  <->  -.  v
( le `  W
) y ) )
5013, 49anbi12d 716 . . . . . . 7  |-  ( x  =  y  ->  (
( ( 0g `  W ) ( lt
`  W ) x  /\  -.  v ( le `  W ) x )  <->  ( ( 0g `  W ) ( lt `  W ) y  /\  -.  v
( le `  W
) y ) ) )
5150cbvrexv 3060 . . . . . 6  |-  ( E. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  /\  -.  v ( le `  W ) x )  <->  E. y  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) y  /\  -.  v ( le `  W ) y ) )
5248, 51syl6ib 230 . . . . 5  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W ) )  -> 
( ( 0g `  W ) ( lt
`  W ) v  ->  E. y  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) y  /\  -.  v ( le `  W ) y ) ) )
53523impia 1203 . . . 4  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) v )  ->  E. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) y  /\  -.  v
( le `  W
) y ) )
54 simp1l1 1099 . . . . . 6  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) v )  ->  W  e. oGrp )
55 isogrp 28478 . . . . . . 7  |-  ( W  e. oGrp 
<->  ( W  e.  Grp  /\  W  e. oMnd ) )
5655simprbi 466 . . . . . 6  |-  ( W  e. oGrp  ->  W  e. oMnd )
57 omndtos 28481 . . . . . 6  |-  ( W  e. oMnd  ->  W  e. Toset )
5854, 56, 573syl 18 . . . . 5  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) v )  ->  W  e. Toset )
59 simp2 1007 . . . . 5  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) v )  ->  v  e.  ( Base `  W
) )
601, 3, 4tltnle 28436 . . . . . . . . . 10  |-  ( ( W  e. Toset  /\  y  e.  ( Base `  W
)  /\  v  e.  ( Base `  W )
)  ->  ( y
( lt `  W
) v  <->  -.  v
( le `  W
) y ) )
6160bicomd 205 . . . . . . . . 9  |-  ( ( W  e. Toset  /\  y  e.  ( Base `  W
)  /\  v  e.  ( Base `  W )
)  ->  ( -.  v ( le `  W ) y  <->  y ( lt `  W ) v ) )
62613com23 1212 . . . . . . . 8  |-  ( ( W  e. Toset  /\  v  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( -.  v ( le `  W ) y  <->  y ( lt `  W ) v ) )
63623expa 1206 . . . . . . 7  |-  ( ( ( W  e. Toset  /\  v  e.  ( Base `  W
) )  /\  y  e.  ( Base `  W
) )  ->  ( -.  v ( le `  W ) y  <->  y ( lt `  W ) v ) )
6463anbi2d 709 . . . . . 6  |-  ( ( ( W  e. Toset  /\  v  e.  ( Base `  W
) )  /\  y  e.  ( Base `  W
) )  ->  (
( ( 0g `  W ) ( lt
`  W ) y  /\  -.  v ( le `  W ) y )  <->  ( ( 0g `  W ) ( lt `  W ) y  /\  y ( lt `  W ) v ) ) )
6564rexbidva 2938 . . . . 5  |-  ( ( W  e. Toset  /\  v  e.  ( Base `  W
) )  ->  ( E. y  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) y  /\  -.  v ( le `  W ) y )  <->  E. y  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) y  /\  y ( lt `  W ) v ) ) )
6658, 59, 65syl2anc 666 . . . 4  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) v )  ->  ( E. y  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) y  /\  -.  v ( le `  W ) y )  <->  E. y  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) y  /\  y ( lt `  W ) v ) ) )
6753, 66mpbid 214 . . 3  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  (
Base `  W )
( ( 0g `  W ) ( lt
`  W ) u  /\  A. x  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  u ( le `  W ) x ) ) )  /\  v  e.  ( Base `  W )  /\  ( 0g `  W ) ( lt `  W ) v )  ->  E. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) y  /\  y ( lt `  W ) v ) )
681, 2, 3, 4, 5, 29, 30, 31, 32, 67archiabllem2 28527 . 2  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp  /\  W  e. Archi )  /\  -.  E. u  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) u  /\  A. x  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  u
( le `  W
) x ) ) )  ->  W  e.  Abel )
6928, 68pm2.61dan 799 1  |-  ( ( W  e. oGrp  /\  (oppg `  W
)  e. oGrp  /\  W  e. Archi
)  ->  W  e.  Abel )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1873   A.wral 2776   E.wrex 2777   class class class wbr 4429   ` cfv 5607   Basecbs 15126   +g cplusg 15195   lecple 15202   0gc0g 15343   ltcplt 16191  Tosetctos 16284   Grpcgrp 16674  .gcmg 16677  oppgcoppg 17001   Abelcabl 17436  oMndcomnd 28473  oGrpcogrp 28474  Archicarchi 28507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-8 1875  ax-9 1877  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402  ax-rep 4542  ax-sep 4552  ax-nul 4561  ax-pow 4608  ax-pr 4666  ax-un 6603  ax-inf2 8161  ax-cnex 9608  ax-resscn 9609  ax-1cn 9610  ax-icn 9611  ax-addcl 9612  ax-addrcl 9613  ax-mulcl 9614  ax-mulrcl 9615  ax-mulcom 9616  ax-addass 9617  ax-mulass 9618  ax-distr 9619  ax-i2m1 9620  ax-1ne0 9621  ax-1rid 9622  ax-rnegex 9623  ax-rrecex 9624  ax-cnre 9625  ax-pre-lttri 9626  ax-pre-lttrn 9627  ax-pre-ltadd 9628  ax-pre-mulgt0 9629
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1659  df-nf 1663  df-sb 1792  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3087  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3918  df-pw 3989  df-sn 4005  df-pr 4007  df-tp 4009  df-op 4011  df-uni 4226  df-iun 4307  df-br 4430  df-opab 4489  df-mpt 4490  df-tr 4525  df-eprel 4770  df-id 4774  df-po 4780  df-so 4781  df-fr 4818  df-we 4820  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-pred 5405  df-ord 5451  df-on 5452  df-lim 5453  df-suc 5454  df-iota 5571  df-fun 5609  df-fn 5610  df-f 5611  df-f1 5612  df-fo 5613  df-f1o 5614  df-fv 5615  df-riota 6273  df-ov 6314  df-oprab 6315  df-mpt2 6316  df-om 6713  df-1st 6813  df-2nd 6814  df-tpos 6990  df-wrecs 7045  df-recs 7107  df-rdg 7145  df-er 7380  df-en 7587  df-dom 7588  df-sdom 7589  df-pnf 9690  df-mnf 9691  df-xr 9692  df-ltxr 9693  df-le 9694  df-sub 9875  df-neg 9876  df-nn 10623  df-2 10681  df-3 10682  df-4 10683  df-5 10684  df-6 10685  df-7 10686  df-8 10687  df-9 10688  df-10 10689  df-n0 10883  df-z 10951  df-uz 11173  df-fz 11798  df-seq 12226  df-ndx 15129  df-slot 15130  df-base 15131  df-sets 15132  df-plusg 15208  df-ple 15215  df-0g 15345  df-preset 16178  df-poset 16196  df-plt 16209  df-toset 16285  df-mgm 16493  df-sgrp 16532  df-mnd 16542  df-grp 16678  df-minusg 16679  df-sbg 16680  df-mulg 16681  df-oppg 17002  df-cmn 17437  df-abl 17438  df-omnd 28475  df-ogrp 28476  df-inftm 28508  df-archi 28509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator