Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovov0bi Structured version   Unicode version

Theorem aovov0bi 38088
Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovov0bi  |-  ( ( A F B )  =  (/)  <->  ( (( A F B))  =  (/)  \/ (( A F B))  =  _V ) )

Proof of Theorem aovov0bi
StepHypRef Expression
1 df-ov 6308 . . 3  |-  ( A F B )  =  ( F `  <. A ,  B >. )
21eqeq1i 2436 . 2  |-  ( ( A F B )  =  (/)  <->  ( F `  <. A ,  B >. )  =  (/) )
3 afvfv0bi 38044 . 2  |-  ( ( F `  <. A ,  B >. )  =  (/)  <->  (
( F''' <. A ,  B >. )  =  (/)  \/  ( F'''
<. A ,  B >. )  =  _V ) )
4 df-aov 38010 . . . . 5  |- (( A F B))  =  ( F''' <. A ,  B >. )
54eqeq1i 2436 . . . 4  |-  ( (( A F B))  =  (/)  <->  ( F''' <. A ,  B >. )  =  (/) )
65bicomi 205 . . 3  |-  ( ( F''' <. A ,  B >. )  =  (/)  <-> (( A F B))  =  (/) )
74eqeq1i 2436 . . . 4  |-  ( (( A F B))  =  _V  <->  ( F''' <. A ,  B >. )  =  _V )
87bicomi 205 . . 3  |-  ( ( F''' <. A ,  B >. )  =  _V  <-> (( A F B))  =  _V )
96, 8orbi12i 523 . 2  |-  ( ( ( F''' <. A ,  B >. )  =  (/)  \/  ( F'''
<. A ,  B >. )  =  _V )  <->  ( (( A F B))  =  (/)  \/ (( A F B))  =  _V ) )
102, 3, 93bitri 274 1  |-  ( ( A F B )  =  (/)  <->  ( (( A F B))  =  (/)  \/ (( A F B))  =  _V ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    \/ wo 369    = wceq 1437   _Vcvv 3087   (/)c0 3767   <.cop 4008   ` cfv 5601  (class class class)co 6305  '''cafv 38006   ((caov 38007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-res 4866  df-iota 5565  df-fun 5603  df-fv 5609  df-ov 6308  df-dfat 38008  df-afv 38009  df-aov 38010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator