Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aov0nbovbi Structured version   Visualization version   Unicode version

Theorem aov0nbovbi 38842
Description: The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aov0nbovbi  |-  ( (/)  e/  C  ->  ( (( A F B))  e.  C  <->  ( A F B )  e.  C ) )

Proof of Theorem aov0nbovbi
StepHypRef Expression
1 afv0nbfvbi 38798 . 2  |-  ( (/)  e/  C  ->  ( ( F'''
<. A ,  B >. )  e.  C  <->  ( F `  <. A ,  B >. )  e.  C ) )
2 df-aov 38764 . . 3  |- (( A F B))  =  ( F''' <. A ,  B >. )
32eleq1i 2540 . 2  |-  ( (( A F B))  e.  C  <->  ( F''' <. A ,  B >. )  e.  C )
4 df-ov 6311 . . 3  |-  ( A F B )  =  ( F `  <. A ,  B >. )
54eleq1i 2540 . 2  |-  ( ( A F B )  e.  C  <->  ( F `  <. A ,  B >. )  e.  C )
61, 3, 53bitr4g 296 1  |-  ( (/)  e/  C  ->  ( (( A F B))  e.  C  <->  ( A F B )  e.  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    e. wcel 1904    e/ wnel 2642   (/)c0 3722   <.cop 3965   ` cfv 5589  (class class class)co 6308  '''cafv 38760   ((caov 38761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-res 4851  df-iota 5553  df-fun 5591  df-fv 5597  df-ov 6311  df-dfat 38762  df-afv 38763  df-aov 38764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator