Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem5 Structured version   Unicode version

Theorem aomclem5 29582
Description: Lemma for dfac11 29586. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem5.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem5.c  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
aomclem5.d  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
aomclem5.e  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
aomclem5.f  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
aomclem5.g  |-  G  =  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )
aomclem5.on  |-  ( ph  ->  dom  z  e.  On )
aomclem5.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
aomclem5.a  |-  ( ph  ->  A  e.  On )
aomclem5.za  |-  ( ph  ->  dom  z  C_  A
)
aomclem5.y  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
Assertion
Ref Expression
aomclem5  |-  ( ph  ->  G  We  ( R1
`  dom  z )
)
Distinct variable groups:    y, z,
a, b, c, d    ph, a, b    C, a, b, c, d    D, a, b, c, d
Allowed substitution hints:    ph( y, z, c, d)    A( y, z, a, b, c, d)    B( y, z, a, b, c, d)    C( y, z)    D( y, z)    E( y, z, a, b, c, d)    F( y, z, a, b, c, d)    G( y, z, a, b, c, d)

Proof of Theorem aomclem5
StepHypRef Expression
1 aomclem5.f . . . . . 6  |-  F  =  { <. a ,  b
>.  |  ( ( rank `  a )  _E  ( rank `  b
)  \/  ( (
rank `  a )  =  ( rank `  b
)  /\  a (
z `  suc  ( rank `  a ) ) b ) ) }
2 aomclem5.on . . . . . . 7  |-  ( ph  ->  dom  z  e.  On )
32adantr 465 . . . . . 6  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  dom  z  e.  On )
4 simpr 461 . . . . . 6  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  dom  z  =  U. dom  z )
5 aomclem5.we . . . . . . 7  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
65adantr 465 . . . . . 6  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
71, 3, 4, 6aomclem4 29581 . . . . 5  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  F  We  ( R1
`  dom  z )
)
8 iftrue 3908 . . . . . . 7  |-  ( dom  z  =  U. dom  z  ->  if ( dom  z  =  U. dom  z ,  F ,  E )  =  F )
98adantl 466 . . . . . 6  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  if ( dom  z  =  U. dom  z ,  F ,  E )  =  F )
10 eqidd 2455 . . . . . 6  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  ( R1 `  dom  z )  =  ( R1 `  dom  z
) )
119, 10weeq12d 29563 . . . . 5  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  ( if ( dom  z  =  U. dom  z ,  F ,  E )  We  ( R1 `  dom  z )  <-> 
F  We  ( R1
`  dom  z )
) )
127, 11mpbird 232 . . . 4  |-  ( (
ph  /\  dom  z  = 
U. dom  z )  ->  if ( dom  z  =  U. dom  z ,  F ,  E )  We  ( R1 `  dom  z ) )
13 aomclem5.b . . . . . 6  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
14 aomclem5.c . . . . . 6  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
15 aomclem5.d . . . . . 6  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
16 aomclem5.e . . . . . 6  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
172adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  dom  z  e.  On )
18 eloni 4840 . . . . . . . 8  |-  ( dom  z  e.  On  ->  Ord 
dom  z )
19 orduniorsuc 6554 . . . . . . . 8  |-  ( Ord 
dom  z  ->  ( dom  z  =  U. dom  z  \/  dom  z  =  suc  U. dom  z ) )
202, 18, 193syl 20 . . . . . . 7  |-  ( ph  ->  ( dom  z  = 
U. dom  z  \/  dom  z  =  suc  U.
dom  z ) )
2120orcanai 904 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  dom  z  =  suc  U. dom  z )
225adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
23 aomclem5.a . . . . . . 7  |-  ( ph  ->  A  e.  On )
2423adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  A  e.  On )
25 aomclem5.za . . . . . . 7  |-  ( ph  ->  dom  z  C_  A
)
2625adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  dom  z  C_  A )
27 aomclem5.y . . . . . . 7  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
2827adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
2913, 14, 15, 16, 17, 21, 22, 24, 26, 28aomclem3 29580 . . . . 5  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  E  We  ( R1 `  dom  z ) )
30 iffalse 3910 . . . . . . 7  |-  ( -. 
dom  z  =  U. dom  z  ->  if ( dom  z  =  U. dom  z ,  F ,  E )  =  E )
3130adantl 466 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  if ( dom  z  =  U. dom  z ,  F ,  E )  =  E )
32 eqidd 2455 . . . . . 6  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  ( R1 `  dom  z )  =  ( R1 `  dom  z
) )
3331, 32weeq12d 29563 . . . . 5  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  ( if ( dom  z  =  U. dom  z ,  F ,  E )  We  ( R1 `  dom  z )  <-> 
E  We  ( R1
`  dom  z )
) )
3429, 33mpbird 232 . . . 4  |-  ( (
ph  /\  -.  dom  z  =  U. dom  z )  ->  if ( dom  z  =  U. dom  z ,  F ,  E )  We  ( R1 `  dom  z ) )
3512, 34pm2.61dan 789 . . 3  |-  ( ph  ->  if ( dom  z  =  U. dom  z ,  F ,  E )  We  ( R1 `  dom  z ) )
36 weinxp 5017 . . 3  |-  ( if ( dom  z  = 
U. dom  z ,  F ,  E )  We  ( R1 `  dom  z )  <->  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )  We  ( R1 `  dom  z ) )
3735, 36sylib 196 . 2  |-  ( ph  ->  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )  We  ( R1 `  dom  z ) )
38 aomclem5.g . . 3  |-  G  =  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )
39 weeq1 4819 . . 3  |-  ( G  =  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )  ->  ( G  We  ( R1 ` 
dom  z )  <->  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )  We  ( R1 `  dom  z ) ) )
4038, 39ax-mp 5 . 2  |-  ( G  We  ( R1 `  dom  z )  <->  ( if ( dom  z  =  U. dom  z ,  F ,  E )  i^i  (
( R1 `  dom  z )  X.  ( R1 `  dom  z ) ) )  We  ( R1 `  dom  z ) )
4137, 40sylibr 212 1  |-  ( ph  ->  G  We  ( R1
`  dom  z )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800   _Vcvv 3078    \ cdif 3436    i^i cin 3438    C_ wss 3439   (/)c0 3748   ifcif 3902   ~Pcpw 3971   {csn 3988   U.cuni 4202   |^|cint 4239   class class class wbr 4403   {copab 4460    |-> cmpt 4461    _E cep 4741    We wwe 4789   Ord word 4829   Oncon0 4830   suc csuc 4832    X. cxp 4949   `'ccnv 4950   dom cdm 4951   ran crn 4952   "cima 4954   ` cfv 5529  recscrecs 6944   Fincfn 7423   supcsup 7805   R1cr1 8084   rankcrnk 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-er 7214  df-map 7329  df-en 7424  df-fin 7427  df-sup 7806  df-r1 8086  df-rank 8087
This theorem is referenced by:  aomclem6  29583
  Copyright terms: Public domain W3C validator