MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anor Structured version   Visualization version   Unicode version

Theorem anor 496
Description: Conjunction in terms of disjunction (De Morgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Nov-2012.)
Assertion
Ref Expression
anor  |-  ( (
ph  /\  ps )  <->  -.  ( -.  ph  \/  -.  ps ) )

Proof of Theorem anor
StepHypRef Expression
1 ianor 495 . . 3  |-  ( -.  ( ph  /\  ps ) 
<->  ( -.  ph  \/  -.  ps ) )
21bicomi 207 . 2  |-  ( ( -.  ph  \/  -.  ps )  <->  -.  ( ph  /\ 
ps ) )
32con2bii 338 1  |-  ( (
ph  /\  ps )  <->  -.  ( -.  ph  \/  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189    \/ wo 374    /\ wa 375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377
This theorem is referenced by:  pm3.1  505  pm3.11  506  dn1  983  3anor  1007  bropopvvv  6906  2wlkonot3v  25659  2spthonot3v  25660  ifpananb  36196  iunrelexp0  36340
  Copyright terms: Public domain W3C validator