MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvd Structured version   Unicode version

Theorem angpieqvd 22887
Description: The angle ABC is  pi iff B is a nontrivial convex combination of A and C, i.e., iff B is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
angpieqvd.A  |-  ( ph  ->  A  e.  CC )
angpieqvd.B  |-  ( ph  ->  B  e.  CC )
angpieqvd.C  |-  ( ph  ->  C  e.  CC )
angpieqvd.AneB  |-  ( ph  ->  A  =/=  B )
angpieqvd.BneC  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
angpieqvd  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi  <->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C
) ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    w, F    ph, w    w, A    w, B    w, C
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem angpieqvd
StepHypRef Expression
1 angpieqvd.angdef . . . . . . 7  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
2 angpieqvd.A . . . . . . 7  |-  ( ph  ->  A  e.  CC )
3 angpieqvd.B . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4 angpieqvd.C . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5 angpieqvd.AneB . . . . . . 7  |-  ( ph  ->  A  =/=  B )
6 angpieqvd.BneC . . . . . . 7  |-  ( ph  ->  B  =/=  C )
71, 2, 3, 4, 5, 6angpieqvdlem2 22885 . . . . . 6  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( ( A  -  B ) F ( C  -  B ) )  =  pi ) )
87biimpar 485 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  -u (
( C  -  B
)  /  ( A  -  B ) )  e.  RR+ )
92adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  A  e.  CC )
103adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  B  e.  CC )
114adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  C  e.  CC )
125adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  A  =/=  B )
131, 2, 3, 4, 5, 6angpined 22886 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi 
->  A  =/=  C
) )
1413imp 429 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  A  =/=  C )
159, 10, 11, 12, 14angpieqvdlem 22884 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( -u ( ( C  -  B )  /  ( A  -  B )
)  e.  RR+  <->  ( ( C  -  B )  /  ( C  -  A ) )  e.  ( 0 (,) 1
) ) )
168, 15mpbid 210 . . . 4  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  (
( C  -  B
)  /  ( C  -  A ) )  e.  ( 0 (,) 1 ) )
174, 3subcld 9926 . . . . . . . 8  |-  ( ph  ->  ( C  -  B
)  e.  CC )
1817adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  B )  e.  CC )
194, 2subcld 9926 . . . . . . . 8  |-  ( ph  ->  ( C  -  A
)  e.  CC )
2019adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  A )  e.  CC )
2114necomd 2738 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  C  =/=  A )
2211, 9, 21subne0d 9935 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  A )  =/=  0 )
2318, 20, 22divcan1d 10317 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  (
( ( C  -  B )  /  ( C  -  A )
)  x.  ( C  -  A ) )  =  ( C  -  B ) )
2423eqcomd 2475 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( C  -  B )  =  ( ( ( C  -  B )  /  ( C  -  A ) )  x.  ( C  -  A
) ) )
2518, 20, 22divcld 10316 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  (
( C  -  B
)  /  ( C  -  A ) )  e.  CC )
269, 10, 11, 25affineequiv 22882 . . . . 5  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  ( B  =  ( (
( ( C  -  B )  /  ( C  -  A )
)  x.  A )  +  ( ( 1  -  ( ( C  -  B )  / 
( C  -  A
) ) )  x.  C ) )  <->  ( C  -  B )  =  ( ( ( C  -  B )  /  ( C  -  A )
)  x.  ( C  -  A ) ) ) )
2724, 26mpbird 232 . . . 4  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  B  =  ( ( ( ( C  -  B
)  /  ( C  -  A ) )  x.  A )  +  ( ( 1  -  ( ( C  -  B )  /  ( C  -  A )
) )  x.  C
) ) )
28 oveq1 6289 . . . . . . 7  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
w  x.  A )  =  ( ( ( C  -  B )  /  ( C  -  A ) )  x.  A ) )
29 oveq2 6290 . . . . . . . 8  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
1  -  w )  =  ( 1  -  ( ( C  -  B )  /  ( C  -  A )
) ) )
3029oveq1d 6297 . . . . . . 7  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
( 1  -  w
)  x.  C )  =  ( ( 1  -  ( ( C  -  B )  / 
( C  -  A
) ) )  x.  C ) )
3128, 30oveq12d 6300 . . . . . 6  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  (
( w  x.  A
)  +  ( ( 1  -  w )  x.  C ) )  =  ( ( ( ( C  -  B
)  /  ( C  -  A ) )  x.  A )  +  ( ( 1  -  ( ( C  -  B )  /  ( C  -  A )
) )  x.  C
) ) )
3231eqeq2d 2481 . . . . 5  |-  ( w  =  ( ( C  -  B )  / 
( C  -  A
) )  ->  ( B  =  ( (
w  x.  A )  +  ( ( 1  -  w )  x.  C ) )  <->  B  =  ( ( ( ( C  -  B )  /  ( C  -  A ) )  x.  A )  +  ( ( 1  -  (
( C  -  B
)  /  ( C  -  A ) ) )  x.  C ) ) ) )
3332rspcev 3214 . . . 4  |-  ( ( ( ( C  -  B )  /  ( C  -  A )
)  e.  ( 0 (,) 1 )  /\  B  =  ( (
( ( C  -  B )  /  ( C  -  A )
)  x.  A )  +  ( ( 1  -  ( ( C  -  B )  / 
( C  -  A
) ) )  x.  C ) ) )  ->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C ) ) )
3416, 27, 33syl2anc 661 . . 3  |-  ( (
ph  /\  ( ( A  -  B ) F ( C  -  B ) )  =  pi )  ->  E. w  e.  ( 0 (,) 1
) B  =  ( ( w  x.  A
)  +  ( ( 1  -  w )  x.  C ) ) )
3534ex 434 . 2  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi 
->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C ) ) ) )
362adantr 465 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  A  e.  CC )
373adantr 465 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  B  e.  CC )
384adantr 465 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  C  e.  CC )
39 simpr 461 . . . . . 6  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  w  e.  ( 0 (,) 1
) )
40 elioore 11555 . . . . . 6  |-  ( w  e.  ( 0 (,) 1 )  ->  w  e.  RR )
41 recn 9578 . . . . . 6  |-  ( w  e.  RR  ->  w  e.  CC )
4239, 40, 413syl 20 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  w  e.  CC )
4336, 37, 38, 42affineequiv 22882 . . . 4  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  ( B  =  ( (
w  x.  A )  +  ( ( 1  -  w )  x.  C ) )  <->  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) ) )
44 simp3 998 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )
45173ad2ant1 1017 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  B )  e.  CC )
46423adant3 1016 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  w  e.  CC )
47193ad2ant1 1017 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  A )  e.  CC )
486necomd 2738 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  =/=  B )
494, 3, 48subne0d 9935 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  -  B
)  =/=  0 )
50493ad2ant1 1017 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  B )  =/=  0
)
5144, 50eqnetrrd 2761 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( w  x.  ( C  -  A
) )  =/=  0
)
5246, 47, 51mulne0bbd 10201 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( C  -  A )  =/=  0
)
5345, 46, 47, 52divmul3d 10350 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( (
( C  -  B
)  /  ( C  -  A ) )  =  w  <->  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) ) )
5444, 53mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( ( C  -  B )  /  ( C  -  A ) )  =  w )
55 simp2 997 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  w  e.  ( 0 (,) 1
) )
5654, 55eqeltrd 2555 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( ( C  -  B )  /  ( C  -  A ) )  e.  ( 0 (,) 1
) )
5723ad2ant1 1017 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  A  e.  CC )
5833ad2ant1 1017 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  B  e.  CC )
5943ad2ant1 1017 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  C  e.  CC )
6053ad2ant1 1017 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  A  =/=  B )
6159, 57, 52subne0ad 9937 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  C  =/=  A )
6261necomd 2738 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  A  =/=  C )
6357, 58, 59, 60, 62angpieqvdlem 22884 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( -u (
( C  -  B
)  /  ( A  -  B ) )  e.  RR+  <->  ( ( C  -  B )  / 
( C  -  A
) )  e.  ( 0 (,) 1 ) ) )
6456, 63mpbird 232 . . . . . 6  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ )
6563ad2ant1 1017 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  B  =/=  C )
661, 57, 58, 59, 60, 65angpieqvdlem2 22885 . . . . . 6  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( -u (
( C  -  B
)  /  ( A  -  B ) )  e.  RR+  <->  ( ( A  -  B ) F ( C  -  B
) )  =  pi ) )
6764, 66mpbid 210 . . . . 5  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
)  /\  ( C  -  B )  =  ( w  x.  ( C  -  A ) ) )  ->  ( ( A  -  B ) F ( C  -  B ) )  =  pi )
68673expia 1198 . . . 4  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  (
( C  -  B
)  =  ( w  x.  ( C  -  A ) )  -> 
( ( A  -  B ) F ( C  -  B ) )  =  pi ) )
6943, 68sylbid 215 . . 3  |-  ( (
ph  /\  w  e.  ( 0 (,) 1
) )  ->  ( B  =  ( (
w  x.  A )  +  ( ( 1  -  w )  x.  C ) )  -> 
( ( A  -  B ) F ( C  -  B ) )  =  pi ) )
7069rexlimdva 2955 . 2  |-  ( ph  ->  ( E. w  e.  ( 0 (,) 1
) B  =  ( ( w  x.  A
)  +  ( ( 1  -  w )  x.  C ) )  ->  ( ( A  -  B ) F ( C  -  B
) )  =  pi ) )
7135, 70impbid 191 1  |-  ( ph  ->  ( ( ( A  -  B ) F ( C  -  B
) )  =  pi  <->  E. w  e.  ( 0 (,) 1 ) B  =  ( ( w  x.  A )  +  ( ( 1  -  w )  x.  C
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    \ cdif 3473   {csn 4027   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    - cmin 9801   -ucneg 9802    / cdiv 10202   RR+crp 11216   (,)cioo 11525   Imcim 12888   picpi 13657   logclog 22667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11960  df-seq 12071  df-exp 12130  df-fac 12316  df-bc 12343  df-hash 12368  df-shft 12857  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-limsup 13250  df-clim 13267  df-rlim 13268  df-sum 13465  df-ef 13658  df-sin 13660  df-cos 13661  df-pi 13663  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-hom 14572  df-cco 14573  df-rest 14671  df-topn 14672  df-0g 14690  df-gsum 14691  df-topgen 14692  df-pt 14693  df-prds 14696  df-xrs 14750  df-qtop 14755  df-imas 14756  df-xps 14758  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-submnd 15775  df-mulg 15858  df-cntz 16147  df-cmn 16593  df-psmet 18179  df-xmet 18180  df-met 18181  df-bl 18182  df-mopn 18183  df-fbas 18184  df-fg 18185  df-cnfld 18189  df-top 19163  df-bases 19165  df-topon 19166  df-topsp 19167  df-cld 19283  df-ntr 19284  df-cls 19285  df-nei 19362  df-lp 19400  df-perf 19401  df-cn 19491  df-cnp 19492  df-haus 19579  df-tx 19795  df-hmeo 19988  df-fil 20079  df-fm 20171  df-flim 20172  df-flf 20173  df-xms 20555  df-ms 20556  df-tms 20557  df-cncf 21114  df-limc 22002  df-dv 22003  df-log 22669
This theorem is referenced by:  chordthm  22893  chordthmALT  32813
  Copyright terms: Public domain W3C validator