MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angcan Structured version   Visualization version   Unicode version

Theorem angcan 23724
Description: Cancel a constant multiplier in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypothesis
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
Assertion
Ref Expression
angcan  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( C  x.  A ) F ( C  x.  B ) )  =  ( A F B ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y
Allowed substitution hints:    F( x, y)

Proof of Theorem angcan
StepHypRef Expression
1 simp2l 1033 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  B  e.  CC )
2 simp1l 1031 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  A  e.  CC )
3 simp3l 1035 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  C  e.  CC )
4 simp1r 1032 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  A  =/=  0 )
5 simp3r 1036 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  C  =/=  0 )
61, 2, 3, 4, 5divcan5d 10406 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( C  x.  B )  /  ( C  x.  A )
)  =  ( B  /  A ) )
76fveq2d 5867 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( log `  (
( C  x.  B
)  /  ( C  x.  A ) ) )  =  ( log `  ( B  /  A
) ) )
87fveq2d 5867 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( Im `  ( log `  ( ( C  x.  B )  / 
( C  x.  A
) ) ) )  =  ( Im `  ( log `  ( B  /  A ) ) ) )
93, 2mulcld 9660 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( C  x.  A
)  e.  CC )
103, 2, 5, 4mulne0d 10261 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( C  x.  A
)  =/=  0 )
113, 1mulcld 9660 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( C  x.  B
)  e.  CC )
12 simp2r 1034 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  B  =/=  0 )
133, 1, 5, 12mulne0d 10261 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( C  x.  B
)  =/=  0 )
14 ang.1 . . . 4  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
1514angval 23723 . . 3  |-  ( ( ( ( C  x.  A )  e.  CC  /\  ( C  x.  A
)  =/=  0 )  /\  ( ( C  x.  B )  e.  CC  /\  ( C  x.  B )  =/=  0 ) )  -> 
( ( C  x.  A ) F ( C  x.  B ) )  =  ( Im
`  ( log `  (
( C  x.  B
)  /  ( C  x.  A ) ) ) ) )
169, 10, 11, 13, 15syl22anc 1268 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( C  x.  A ) F ( C  x.  B ) )  =  ( Im
`  ( log `  (
( C  x.  B
)  /  ( C  x.  A ) ) ) ) )
1714angval 23723 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( A F B )  =  ( Im
`  ( log `  ( B  /  A ) ) ) )
18173adant3 1027 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( A F B )  =  ( Im
`  ( log `  ( B  /  A ) ) ) )
198, 16, 183eqtr4d 2494 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( C  x.  A ) F ( C  x.  B ) )  =  ( A F B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621    \ cdif 3400   {csn 3967   ` cfv 5581  (class class class)co 6288    |-> cmpt2 6290   CCcc 9534   0cc0 9536    x. cmul 9541    / cdiv 10266   Imcim 13154   logclog 23497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-po 4754  df-so 4755  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267
This theorem is referenced by:  angneg  23725  ang180lem5  23735  isosctrlem3  23742
  Copyright terms: Public domain W3C validator