MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem3 Structured version   Visualization version   Unicode version

Theorem ang180lem3 23819
Description: Lemma for ang180 23822. Since ang180lem1 23817 shows that  N is an integer and ang180lem2 23818 shows that  N is strictly between  -u 2 and  1, it follows that  N  e.  { -u 1 ,  0 }, and these two cases correspond to the two possible values for  T. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
ang180lem1.2  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
ang180lem1.3  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
Assertion
Ref Expression
ang180lem3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  { -u ( _i  x.  pi ) ,  ( _i  x.  pi ) } )
Distinct variable group:    x, y, A
Allowed substitution hints:    T( x, y)    F( x, y)    N( x, y)

Proof of Theorem ang180lem3
StepHypRef Expression
1 2cn 10702 . . . . . . . . . 10  |-  2  e.  CC
2 picn 23493 . . . . . . . . . 10  |-  pi  e.  CC
31, 2mulcli 9666 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  CC
4 2ne0 10724 . . . . . . . . 9  |-  2  =/=  0
53, 1, 4divreci 10374 . . . . . . . 8  |-  ( ( 2  x.  pi )  /  2 )  =  ( ( 2  x.  pi )  x.  (
1  /  2 ) )
62, 1, 4divcan3i 10375 . . . . . . . 8  |-  ( ( 2  x.  pi )  /  2 )  =  pi
75, 6eqtr3i 2495 . . . . . . 7  |-  ( ( 2  x.  pi )  x.  ( 1  / 
2 ) )  =  pi
8 ang180lem1.3 . . . . . . . . . 10  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
9 ang.1 . . . . . . . . . . . . . . . 16  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
10 ang180lem1.2 . . . . . . . . . . . . . . . 16  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
119, 10, 8ang180lem2 23818 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  <  N  /\  N  <  1 ) )
1211simprd 470 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <  1 )
13 1e0p1 11102 . . . . . . . . . . . . . 14  |-  1  =  ( 0  +  1 )
1412, 13syl6breq 4435 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <  ( 0  +  1 ) )
159, 10, 8ang180lem1 23817 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
1615simpld 466 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  ZZ )
17 0z 10972 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
18 zleltp1 11011 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <_  0  <->  N  <  ( 0  +  1 ) ) )
1916, 17, 18sylancl 675 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  <_  0  <->  N  <  ( 0  +  1 ) ) )
2014, 19mpbird 240 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <_  0 )
2120adantr 472 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  N  <_  0 )
22 zlem1lt 11012 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  ( 0  -  1 )  <  N ) )
2317, 16, 22sylancr 676 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  N  <->  ( 0  -  1 )  < 
N ) )
24 df-neg 9883 . . . . . . . . . . . . . 14  |-  -u 1  =  ( 0  -  1 )
2524breq1i 4402 . . . . . . . . . . . . 13  |-  ( -u
1  <  N  <->  ( 0  -  1 )  < 
N )
2623, 25syl6bbr 271 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  N  <->  -u 1  < 
N ) )
2726biimpar 493 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  0  <_  N )
2816zred 11063 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  RR )
2928adantr 472 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  N  e.  RR )
30 0re 9661 . . . . . . . . . . . 12  |-  0  e.  RR
31 letri3 9737 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  0  e.  RR )  ->  ( N  =  0  <-> 
( N  <_  0  /\  0  <_  N ) ) )
3229, 30, 31sylancl 675 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( N  =  0  <->  ( N  <_  0  /\  0  <_  N ) ) )
3321, 27, 32mpbir2and 936 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  N  = 
0 )
348, 33syl5eqr 2519 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  =  0 )
35 ax-1cn 9615 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
36 simp1 1030 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  e.  CC )
37 subcl 9894 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
3835, 36, 37sylancr 676 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  e.  CC )
39 simp3 1032 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  1 )
4039necomd 2698 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  =/=  A )
41 subeq0 9920 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
4235, 36, 41sylancr 676 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
4342necon3bid 2687 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =/=  0  <->  1  =/=  A ) )
4440, 43mpbird 240 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  =/=  0 )
4538, 44reccld 10398 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  e.  CC )
4638, 44recne0d 10399 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =/=  0 )
4745, 46logcld 23599 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( 1  / 
( 1  -  A
) ) )  e.  CC )
48 subcl 9894 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
4936, 35, 48sylancl 675 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  e.  CC )
50 simp2 1031 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  0 )
5149, 36, 50divcld 10405 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  e.  CC )
52 subeq0 9920 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  =  0  <-> 
A  =  1 ) )
5336, 35, 52sylancl 675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =  0  <->  A  =  1 ) )
5453necon3bid 2687 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =/=  0  <->  A  =/=  1 ) )
5539, 54mpbird 240 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  =/=  0 )
5649, 36, 55, 50divne0d 10421 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  =/=  0 )
5751, 56logcld 23599 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )
5847, 57addcld 9680 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC )
59 logcl 23597 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
60593adant3 1050 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  A )  e.  CC )
6158, 60addcld 9680 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  CC )
6210, 61syl5eqel 2553 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  CC )
63 ax-icn 9616 . . . . . . . . . . . . . 14  |-  _i  e.  CC
6463a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  e.  CC )
65 ine0 10075 . . . . . . . . . . . . . 14  |-  _i  =/=  0
6665a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  =/=  0 )
6762, 64, 66divcld 10405 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  CC )
683a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  CC )
69 pire 23492 . . . . . . . . . . . . . . 15  |-  pi  e.  RR
70 pipos 23494 . . . . . . . . . . . . . . 15  |-  0  <  pi
7169, 70gt0ne0ii 10171 . . . . . . . . . . . . . 14  |-  pi  =/=  0
721, 2, 4, 71mulne0i 10277 . . . . . . . . . . . . 13  |-  ( 2  x.  pi )  =/=  0
7372a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =/=  0 )
7467, 68, 73divcld 10405 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  CC )
7574adantr 472 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( ( T  /  _i )  / 
( 2  x.  pi ) )  e.  CC )
76 halfcn 10852 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
77 subeq0 9920 . . . . . . . . . 10  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  =  0  <-> 
( ( T  /  _i )  /  (
2  x.  pi ) )  =  ( 1  /  2 ) ) )
7875, 76, 77sylancl 675 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  =  0  <->  ( ( T  /  _i )  / 
( 2  x.  pi ) )  =  ( 1  /  2 ) ) )
7934, 78mpbid 215 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( ( T  /  _i )  / 
( 2  x.  pi ) )  =  ( 1  /  2 ) )
8067adantr 472 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( T  /  _i )  e.  CC )
813a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( 2  x.  pi )  e.  CC )
8276a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( 1  /  2 )  e.  CC )
8372a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( 2  x.  pi )  =/=  0 )
8480, 81, 82, 83divmuld 10427 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
( T  /  _i )  /  ( 2  x.  pi ) )  =  ( 1  /  2
)  <->  ( ( 2  x.  pi )  x.  ( 1  /  2
) )  =  ( T  /  _i ) ) )
8579, 84mpbid 215 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( (
2  x.  pi )  x.  ( 1  / 
2 ) )  =  ( T  /  _i ) )
867, 85syl5reqr 2520 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( T  /  _i )  =  pi )
8762adantr 472 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  T  e.  CC )
8863a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  _i  e.  CC )
892a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  pi  e.  CC )
9065a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  _i  =/=  0 )
9187, 88, 89, 90divmuld 10427 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( ( T  /  _i )  =  pi  <->  ( _i  x.  pi )  =  T
) )
9286, 91mpbid 215 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( _i  x.  pi )  =  T )
9392eqcomd 2477 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  T  =  ( _i  x.  pi ) )
9493olcd 400 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  <  N
)  ->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
952, 63mulneg1i 10085 . . . . . . 7  |-  ( -u pi  x.  _i )  = 
-u ( pi  x.  _i )
962, 63mulcomi 9667 . . . . . . . 8  |-  ( pi  x.  _i )  =  ( _i  x.  pi )
9796negeqi 9888 . . . . . . 7  |-  -u (
pi  x.  _i )  =  -u ( _i  x.  pi )
9895, 97eqtri 2493 . . . . . 6  |-  ( -u pi  x.  _i )  = 
-u ( _i  x.  pi )
9976, 3mulneg1i 10085 . . . . . . . . . 10  |-  ( -u ( 1  /  2
)  x.  ( 2  x.  pi ) )  =  -u ( ( 1  /  2 )  x.  ( 2  x.  pi ) )
10035, 1, 4divcan1i 10373 . . . . . . . . . . . . 13  |-  ( ( 1  /  2 )  x.  2 )  =  1
101100oveq1i 6318 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  x.  2 )  x.  pi )  =  ( 1  x.  pi )
10276, 1, 2mulassi 9670 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  x.  2 )  x.  pi )  =  ( ( 1  / 
2 )  x.  (
2  x.  pi ) )
1032mulid2i 9664 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
104101, 102, 1033eqtr3i 2501 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  x.  ( 2  x.  pi ) )  =  pi
105104negeqi 9888 . . . . . . . . . 10  |-  -u (
( 1  /  2
)  x.  ( 2  x.  pi ) )  =  -u pi
10699, 105eqtri 2493 . . . . . . . . 9  |-  ( -u ( 1  /  2
)  x.  ( 2  x.  pi ) )  =  -u pi
10735, 76negsubdii 9979 . . . . . . . . . . . . 13  |-  -u (
1  -  ( 1  /  2 ) )  =  ( -u 1  +  ( 1  / 
2 ) )
108 1mhlfehlf 10855 . . . . . . . . . . . . . 14  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
109108negeqi 9888 . . . . . . . . . . . . 13  |-  -u (
1  -  ( 1  /  2 ) )  =  -u ( 1  / 
2 )
110107, 109eqtr3i 2495 . . . . . . . . . . . 12  |-  ( -u
1  +  ( 1  /  2 ) )  =  -u ( 1  / 
2 )
111 simpr 468 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u 1  =  N )
112111, 8syl6eq 2521 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u 1  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) ) )
113112oveq1d 6323 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( -u 1  +  ( 1  / 
2 ) )  =  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) ) )
114110, 113syl5eqr 2519 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u ( 1  /  2 )  =  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) ) )
115 npcan 9904 . . . . . . . . . . . . 13  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  /  ( 2  x.  pi ) ) )
11674, 76, 115sylancl 675 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
117116adantr 472 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  +  ( 1  / 
2 ) )  =  ( ( T  /  _i )  /  (
2  x.  pi ) ) )
118114, 117eqtrd 2505 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u ( 1  /  2 )  =  ( ( T  /  _i )  /  (
2  x.  pi ) ) )
119118oveq1d 6323 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( -u (
1  /  2 )  x.  ( 2  x.  pi ) )  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  x.  (
2  x.  pi ) ) )
120106, 119syl5eqr 2519 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u pi  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  x.  (
2  x.  pi ) ) )
12167, 68, 73divcan1d 10406 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  x.  ( 2  x.  pi ) )  =  ( T  /  _i ) )
122121adantr 472 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( (
( T  /  _i )  /  ( 2  x.  pi ) )  x.  ( 2  x.  pi ) )  =  ( T  /  _i ) )
123120, 122eqtrd 2505 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u pi  =  ( T  /  _i ) )
124123oveq1d 6323 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( -u pi  x.  _i )  =  ( ( T  /  _i )  x.  _i )
)
12598, 124syl5eqr 2519 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  -u ( _i  x.  pi )  =  ( ( T  /  _i )  x.  _i ) )
12662, 64, 66divcan1d 10406 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  x.  _i )  =  T )
127126adantr 472 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( ( T  /  _i )  x.  _i )  =  T )
128125, 127eqtr2d 2506 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  T  =  -u ( _i  x.  pi ) )
129128orcd 399 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  -u 1  =  N )  ->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
130 df-2 10690 . . . . . . . 8  |-  2  =  ( 1  +  1 )
131130negeqi 9888 . . . . . . 7  |-  -u 2  =  -u ( 1  +  1 )
132 negdi2 9952 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  1  e.  CC )  -> 
-u ( 1  +  1 )  =  (
-u 1  -  1 ) )
13335, 35, 132mp2an 686 . . . . . . 7  |-  -u (
1  +  1 )  =  ( -u 1  -  1 )
134131, 133eqtri 2493 . . . . . 6  |-  -u 2  =  ( -u 1  -  1 )
13511simpld 466 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  <  N )
136134, 135syl5eqbrr 4430 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  -  1 )  <  N )
137 neg1z 10997 . . . . . 6  |-  -u 1  e.  ZZ
138 zlem1lt 11012 . . . . . 6  |-  ( (
-u 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u 1  <_  N  <->  ( -u 1  -  1 )  < 
N ) )
139137, 16, 138sylancr 676 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  <_  N  <->  ( -u 1  -  1 )  < 
N ) )
140136, 139mpbird 240 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 1  <_  N )
141 neg1rr 10736 . . . . 5  |-  -u 1  e.  RR
142 leloe 9738 . . . . 5  |-  ( (
-u 1  e.  RR  /\  N  e.  RR )  ->  ( -u 1  <_  N  <->  ( -u 1  <  N  \/  -u 1  =  N ) ) )
143141, 28, 142sylancr 676 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  <_  N  <->  ( -u 1  <  N  \/  -u 1  =  N ) ) )
144140, 143mpbid 215 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  <  N  \/  -u 1  =  N ) )
14594, 129, 144mpjaodan 803 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
146 ovex 6336 . . . 4  |-  ( ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  _V
14710, 146eqeltri 2545 . . 3  |-  T  e. 
_V
148147elpr 3977 . 2  |-  ( T  e.  { -u (
_i  x.  pi ) ,  ( _i  x.  pi ) }  <->  ( T  =  -u ( _i  x.  pi )  \/  T  =  ( _i  x.  pi ) ) )
149145, 148sylibr 217 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  { -u ( _i  x.  pi ) ,  ( _i  x.  pi ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   _Vcvv 3031    \ cdif 3387   {csn 3959   {cpr 3961   class class class wbr 4395   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558   _ici 9559    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881    / cdiv 10291   2c2 10681   ZZcz 10961   Imcim 13238   picpi 14196   logclog 23583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585
This theorem is referenced by:  ang180lem4  23820
  Copyright terms: Public domain W3C validator