MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem2 Structured version   Visualization version   Unicode version

Theorem ang180lem2 23739
Description: Lemma for ang180 23743. Show that the revolution number  N is strictly between  -u 2 and  1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 23519, but the resulting bound gives only  N  <_ 
1 for the upper bound. The case  N  =  1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments  A ,  1  /  ( 1  -  A ) ,  ( A  -  1 )  /  A must lie on the negative real axis, which is a contradiction because clearly if  A is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
ang180lem1.2  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
ang180lem1.3  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
Assertion
Ref Expression
ang180lem2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  <  N  /\  N  <  1 ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    T( x, y)    F( x, y)    N( x, y)

Proof of Theorem ang180lem2
StepHypRef Expression
1 2cn 10680 . . . . . . 7  |-  2  e.  CC
2 1re 9642 . . . . . . . . 9  |-  1  e.  RR
32rehalfcli 10861 . . . . . . . 8  |-  ( 1  /  2 )  e.  RR
43recni 9655 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
51, 4negsubdii 9960 . . . . . 6  |-  -u (
2  -  ( 1  /  2 ) )  =  ( -u 2  +  ( 1  / 
2 ) )
6 4d2e2 10766 . . . . . . . . 9  |-  ( 4  /  2 )  =  2
76oveq1i 6300 . . . . . . . 8  |-  ( ( 4  /  2 )  -  ( 1  / 
2 ) )  =  ( 2  -  (
1  /  2 ) )
8 4cn 10687 . . . . . . . . . 10  |-  4  e.  CC
9 ax-1cn 9597 . . . . . . . . . 10  |-  1  e.  CC
10 2cnne0 10824 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2  =/=  0 )
11 divsubdir 10303 . . . . . . . . . 10  |-  ( ( 4  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( 4  -  1 )  / 
2 )  =  ( ( 4  /  2
)  -  ( 1  /  2 ) ) )
128, 9, 10, 11mp3an 1364 . . . . . . . . 9  |-  ( ( 4  -  1 )  /  2 )  =  ( ( 4  / 
2 )  -  (
1  /  2 ) )
13 3cn 10684 . . . . . . . . . . 11  |-  3  e.  CC
149, 13addcomi 9824 . . . . . . . . . . . 12  |-  ( 1  +  3 )  =  ( 3  +  1 )
15 df-4 10670 . . . . . . . . . . . 12  |-  4  =  ( 3  +  1 )
1614, 15eqtr4i 2476 . . . . . . . . . . 11  |-  ( 1  +  3 )  =  4
178, 9, 13, 16subaddrii 9964 . . . . . . . . . 10  |-  ( 4  -  1 )  =  3
1817oveq1i 6300 . . . . . . . . 9  |-  ( ( 4  -  1 )  /  2 )  =  ( 3  /  2
)
1912, 18eqtr3i 2475 . . . . . . . 8  |-  ( ( 4  /  2 )  -  ( 1  / 
2 ) )  =  ( 3  /  2
)
207, 19eqtr3i 2475 . . . . . . 7  |-  ( 2  -  ( 1  / 
2 ) )  =  ( 3  /  2
)
2120negeqi 9868 . . . . . 6  |-  -u (
2  -  ( 1  /  2 ) )  =  -u ( 3  / 
2 )
225, 21eqtr3i 2475 . . . . 5  |-  ( -u
2  +  ( 1  /  2 ) )  =  -u ( 3  / 
2 )
23 3re 10683 . . . . . . . . . . . . 13  |-  3  e.  RR
2423rehalfcli 10861 . . . . . . . . . . . 12  |-  ( 3  /  2 )  e.  RR
2524recni 9655 . . . . . . . . . . 11  |-  ( 3  /  2 )  e.  CC
26 picn 23414 . . . . . . . . . . 11  |-  pi  e.  CC
2725, 1, 26mulassi 9652 . . . . . . . . . 10  |-  ( ( ( 3  /  2
)  x.  2 )  x.  pi )  =  ( ( 3  / 
2 )  x.  (
2  x.  pi ) )
28 2ne0 10702 . . . . . . . . . . . 12  |-  2  =/=  0
2913, 1, 28divcan1i 10351 . . . . . . . . . . 11  |-  ( ( 3  /  2 )  x.  2 )  =  3
3029oveq1i 6300 . . . . . . . . . 10  |-  ( ( ( 3  /  2
)  x.  2 )  x.  pi )  =  ( 3  x.  pi )
3127, 30eqtr3i 2475 . . . . . . . . 9  |-  ( ( 3  /  2 )  x.  ( 2  x.  pi ) )  =  ( 3  x.  pi )
3231negeqi 9868 . . . . . . . 8  |-  -u (
( 3  /  2
)  x.  ( 2  x.  pi ) )  =  -u ( 3  x.  pi )
33 2re 10679 . . . . . . . . . . 11  |-  2  e.  RR
34 pire 23413 . . . . . . . . . . 11  |-  pi  e.  RR
3533, 34remulcli 9657 . . . . . . . . . 10  |-  ( 2  x.  pi )  e.  RR
3635recni 9655 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  CC
3725, 36mulneg1i 10064 . . . . . . . 8  |-  ( -u ( 3  /  2
)  x.  ( 2  x.  pi ) )  =  -u ( ( 3  /  2 )  x.  ( 2  x.  pi ) )
3813, 26mulneg2i 10065 . . . . . . . 8  |-  ( 3  x.  -u pi )  = 
-u ( 3  x.  pi )
3932, 37, 383eqtr4i 2483 . . . . . . 7  |-  ( -u ( 3  /  2
)  x.  ( 2  x.  pi ) )  =  ( 3  x.  -u pi )
4034renegcli 9935 . . . . . . . . . . . 12  |-  -u pi  e.  RR
4133, 40remulcli 9657 . . . . . . . . . . 11  |-  ( 2  x.  -u pi )  e.  RR
4241a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  -u pi )  e.  RR )
4340a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  e.  RR )
44 simp1 1008 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  e.  CC )
45 subcl 9874 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
469, 44, 45sylancr 669 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  e.  CC )
47 simp3 1010 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  1 )
4847necomd 2679 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  =/=  A )
49 subeq0 9900 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
509, 44, 49sylancr 669 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
5150necon3bid 2668 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =/=  0  <->  1  =/=  A ) )
5248, 51mpbird 236 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  =/=  0 )
5346, 52reccld 10376 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  e.  CC )
5446, 52recne0d 10377 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =/=  0 )
5553, 54logcld 23520 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( 1  / 
( 1  -  A
) ) )  e.  CC )
56 subcl 9874 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
5744, 9, 56sylancl 668 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  e.  CC )
58 simp2 1009 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  0 )
5957, 44, 58divcld 10383 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  e.  CC )
60 subeq0 9900 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  =  0  <-> 
A  =  1 ) )
6144, 9, 60sylancl 668 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =  0  <->  A  =  1 ) )
6261necon3bid 2668 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =/=  0  <->  A  =/=  1 ) )
6347, 62mpbird 236 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  =/=  0 )
6457, 44, 63, 58divne0d 10399 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  =/=  0 )
6559, 64logcld 23520 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )
6655, 65addcld 9662 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC )
6766imcld 13258 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  RR )
68 logcl 23518 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
69683adant3 1028 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  A )  e.  CC )
7069imcld 13258 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  A ) )  e.  RR )
7155imcld 13258 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( 1  /  (
1  -  A ) ) ) )  e.  RR )
7265imcld 13258 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  RR )
7353, 54logimcld 23521 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  /  ( 1  -  A ) ) ) )  /\  (
Im `  ( log `  ( 1  /  (
1  -  A ) ) ) )  <_  pi ) )
7473simpld 461 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  <  ( Im `  ( log `  ( 1  / 
( 1  -  A
) ) ) ) )
7559, 64logimcld 23521 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  <  ( Im
`  ( log `  (
( A  -  1 )  /  A ) ) )  /\  (
Im `  ( log `  ( ( A  - 
1 )  /  A
) ) )  <_  pi ) )
7675simpld 461 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  <  ( Im `  ( log `  ( ( A  -  1 )  /  A ) ) ) )
7743, 43, 71, 72, 74, 76lt2addd 10236 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  +  -u pi )  <  ( ( Im
`  ( log `  (
1  /  ( 1  -  A ) ) ) )  +  ( Im `  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )
78 negpicn 23417 . . . . . . . . . . . . 13  |-  -u pi  e.  CC
79782timesi 10730 . . . . . . . . . . . 12  |-  ( 2  x.  -u pi )  =  ( -u pi  +  -u pi )
8079a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  -u pi )  =  ( -u pi  +  -u pi ) )
8155, 65imaddd 13278 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  =  ( ( Im `  ( log `  ( 1  /  ( 1  -  A ) ) ) )  +  ( Im
`  ( log `  (
( A  -  1 )  /  A ) ) ) ) )
8277, 80, 813brtr4d 4433 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  -u pi )  <  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )
83 logimcl 23519 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
84833adant3 1028 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
8584simpld 461 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u pi  <  ( Im `  ( log `  A ) ) )
8642, 43, 67, 70, 82, 85lt2addd 10236 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 2  x.  -u pi )  +  -u pi )  <  ( ( Im
`  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  +  ( Im `  ( log `  A ) ) ) )
87 df-3 10669 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
8887oveq1i 6300 . . . . . . . . . . 11  |-  ( 3  x.  -u pi )  =  ( ( 2  +  1 )  x.  -u pi )
891, 9, 78adddiri 9654 . . . . . . . . . . 11  |-  ( ( 2  +  1 )  x.  -u pi )  =  ( ( 2  x.  -u pi )  +  ( 1  x.  -u pi ) )
9078mulid2i 9646 . . . . . . . . . . . 12  |-  ( 1  x.  -u pi )  = 
-u pi
9190oveq2i 6301 . . . . . . . . . . 11  |-  ( ( 2  x.  -u pi )  +  ( 1  x.  -u pi ) )  =  ( ( 2  x.  -u pi )  + 
-u pi )
9288, 89, 913eqtri 2477 . . . . . . . . . 10  |-  ( 3  x.  -u pi )  =  ( ( 2  x.  -u pi )  +  -u pi )
9392a1i 11 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  -u pi )  =  ( (
2  x.  -u pi )  +  -u pi ) )
94 ang180lem1.2 . . . . . . . . . . 11  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
9594fveq2i 5868 . . . . . . . . . 10  |-  ( Im
`  T )  =  ( Im `  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )
9666, 69imaddd 13278 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )  =  ( ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) ) )
9795, 96syl5eq 2497 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  T )  =  ( ( Im
`  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  +  ( Im `  ( log `  A ) ) ) )
9886, 93, 973brtr4d 4433 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  -u pi )  <  ( Im `  T ) )
9966, 69addcld 9662 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  CC )
10094, 99syl5eqel 2533 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  CC )
101 imval 13170 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
Im `  T )  =  ( Re `  ( T  /  _i ) ) )
102100, 101syl 17 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  T )  =  ( Re `  ( T  /  _i ) ) )
103 ang.1 . . . . . . . . . . . 12  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
104 ang180lem1.3 . . . . . . . . . . . 12  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
105103, 94, 104ang180lem1 23738 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
106105simprd 465 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  RR )
107106rered 13287 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Re `  ( T  /  _i ) )  =  ( T  /  _i ) )
108102, 107eqtrd 2485 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  T )  =  ( T  /  _i ) )
10998, 108breqtrd 4427 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  -u pi )  <  ( T  /  _i ) )
11039, 109syl5eqbr 4436 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u ( 3  /  2
)  x.  ( 2  x.  pi ) )  <  ( T  /  _i ) )
11124renegcli 9935 . . . . . . . 8  |-  -u (
3  /  2 )  e.  RR
112111a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u (
3  /  2 )  e.  RR )
11335a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  RR )
114 2pos 10701 . . . . . . . . 9  |-  0  <  2
115 pipos 23415 . . . . . . . . 9  |-  0  <  pi
11633, 34, 114, 115mulgt0ii 9768 . . . . . . . 8  |-  0  <  ( 2  x.  pi )
117116a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  0  <  ( 2  x.  pi ) )
118 ltmuldiv 10478 . . . . . . 7  |-  ( (
-u ( 3  / 
2 )  e.  RR  /\  ( T  /  _i )  e.  RR  /\  (
( 2  x.  pi )  e.  RR  /\  0  <  ( 2  x.  pi ) ) )  -> 
( ( -u (
3  /  2 )  x.  ( 2  x.  pi ) )  < 
( T  /  _i ) 
<-> 
-u ( 3  / 
2 )  <  (
( T  /  _i )  /  ( 2  x.  pi ) ) ) )
119112, 106, 113, 117, 118syl112anc 1272 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( -u ( 3  / 
2 )  x.  (
2  x.  pi ) )  <  ( T  /  _i )  <->  -u ( 3  /  2 )  < 
( ( T  /  _i )  /  (
2  x.  pi ) ) ) )
120110, 119mpbid 214 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u (
3  /  2 )  <  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
12122, 120syl5eqbr 4436 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  +  ( 1  /  2 ) )  <  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
12233renegcli 9935 . . . . . 6  |-  -u 2  e.  RR
123122a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  e.  RR )
1243a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  2 )  e.  RR )
12535, 116gt0ne0ii 10150 . . . . . . 7  |-  ( 2  x.  pi )  =/=  0
126125a1i 11 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =/=  0 )
127106, 113, 126redivcld 10435 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  RR )
128123, 124, 127ltaddsubd 10213 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( -u 2  +  ( 1  /  2 ) )  <  ( ( T  /  _i )  /  ( 2  x.  pi ) )  <->  -u 2  < 
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) ) ) )
129121, 128mpbid 214 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  <  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) ) )
130129, 104syl6breqr 4443 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 2  <  N )
13134a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  pi  e.  RR )
13273simprd 465 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( 1  /  (
1  -  A ) ) ) )  <_  pi )
13375simprd 465 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  ( ( A  - 
1 )  /  A
) ) )  <_  pi )
13471, 72, 131, 131, 132, 133le2addd 10232 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( Im `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  +  ( Im `  ( log `  ( ( A  -  1 )  /  A ) ) ) )  <_  (
pi  +  pi ) )
135262timesi 10730 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  =  ( pi  +  pi )
136135a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =  ( pi  +  pi ) )
137134, 81, 1363brtr4d 4433 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  <_ 
( 2  x.  pi ) )
13884simprd 465 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  A ) )  <_  pi )
13967, 70, 113, 131, 137, 138le2addd 10232 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( Im `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) )  <_  (
( 2  x.  pi )  +  pi )
)
140108, 97eqtr3d 2487 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  =  ( ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) ) )
14187oveq1i 6300 . . . . . . . . . . 11  |-  ( 3  x.  pi )  =  ( ( 2  +  1 )  x.  pi )
1421, 9, 26adddiri 9654 . . . . . . . . . . 11  |-  ( ( 2  +  1 )  x.  pi )  =  ( ( 2  x.  pi )  +  ( 1  x.  pi ) )
14326mulid2i 9646 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
144143oveq2i 6301 . . . . . . . . . . 11  |-  ( ( 2  x.  pi )  +  ( 1  x.  pi ) )  =  ( ( 2  x.  pi )  +  pi )
145141, 142, 1443eqtri 2477 . . . . . . . . . 10  |-  ( 3  x.  pi )  =  ( ( 2  x.  pi )  +  pi )
146145a1i 11 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  pi )  =  ( ( 2  x.  pi )  +  pi ) )
147139, 140, 1463brtr4d 4433 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  <_ 
( 3  x.  pi ) )
14836subid1i 9946 . . . . . . . . . 10  |-  ( ( 2  x.  pi )  -  0 )  =  ( 2  x.  pi )
149148, 125eqnetri 2694 . . . . . . . . 9  |-  ( ( 2  x.  pi )  -  0 )  =/=  0
150 negsub 9922 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
1519, 44, 150sylancr 669 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  +  -u A
)  =  ( 1  -  A ) )
152151adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  +  -u A )  =  ( 1  -  A
) )
153 1rp 11306 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR+
154146, 140oveq12d 6308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 3  x.  pi )  -  ( T  /  _i ) )  =  ( ( ( 2  x.  pi )  +  pi )  -  (
( Im `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  +  ( Im `  ( log `  A ) ) ) ) )
15536a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  CC )
15626a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  pi  e.  CC )
15767recnd 9669 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  CC )
15870recnd 9669 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
Im `  ( log `  A ) )  e.  CC )
159155, 156, 157, 158addsub4d 10033 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( 2  x.  pi )  +  pi )  -  ( (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  +  ( Im `  ( log `  A ) ) ) )  =  ( ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) ) )
160154, 159eqtrd 2485 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 3  x.  pi )  -  ( T  /  _i ) )  =  ( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) ) )
161160adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
3  x.  pi )  -  ( T  /  _i ) )  =  ( ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) ) )
16223, 34remulcli 9657 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 3  x.  pi )  e.  RR
163162recni 9655 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 3  x.  pi )  e.  CC
164 ax-icn 9598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  _i  e.  CC
165164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  e.  CC )
166 ine0 10054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  _i  =/=  0
167166a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  =/=  0 )
168100, 165, 167divcld 10383 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  CC )
169 subeq0 9900 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 3  x.  pi )  e.  CC  /\  ( T  /  _i )  e.  CC )  ->  (
( ( 3  x.  pi )  -  ( T  /  _i ) )  =  0  <->  ( 3  x.  pi )  =  ( T  /  _i ) ) )
170163, 168, 169sylancr 669 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( 3  x.  pi )  -  ( T  /  _i ) )  =  0  <->  ( 3  x.  pi )  =  ( T  /  _i ) ) )
171170biimpar 488 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
3  x.  pi )  -  ( T  /  _i ) )  =  0 )
172161, 171eqtr3d 2487 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  +  ( pi 
-  ( Im `  ( log `  A ) ) ) )  =  0 )
173 resubcl 9938 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2  x.  pi )  e.  RR  /\  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  RR )  ->  (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  e.  RR )
17435, 67, 173sylancr 669 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  e.  RR )
175 subge0 10127 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( 2  x.  pi )  e.  RR  /\  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) )  e.  RR )  ->  (
0  <_  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  <->  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  <_  ( 2  x.  pi ) ) )
17635, 67, 175sylancr 669 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  <->  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  <_  ( 2  x.  pi ) ) )
177137, 176mpbird 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  0  <_  ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) ) )
178 resubcl 9938 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  ->  (
pi  -  ( Im `  ( log `  A
) ) )  e.  RR )
17934, 70, 178sylancr 669 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
pi  -  ( Im `  ( log `  A
) ) )  e.  RR )
180 subge0 10127 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  ->  (
0  <_  ( pi  -  ( Im `  ( log `  A ) ) )  <->  ( Im `  ( log `  A ) )  <_  pi )
)
18134, 70, 180sylancr 669 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
0  <_  ( pi  -  ( Im `  ( log `  A ) ) )  <->  ( Im `  ( log `  A ) )  <_  pi )
)
182138, 181mpbird 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  0  <_  ( pi  -  (
Im `  ( log `  A ) ) ) )
183 add20 10126 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  e.  RR  /\  0  <_  ( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) ) )  /\  ( ( pi  -  ( Im
`  ( log `  A
) ) )  e.  RR  /\  0  <_ 
( pi  -  (
Im `  ( log `  A ) ) ) ) )  ->  (
( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) )  =  0  <->  (
( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  =  0  /\  (
pi  -  ( Im `  ( log `  A
) ) )  =  0 ) ) )
184174, 177, 179, 182, 183syl22anc 1269 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  +  ( pi  -  ( Im `  ( log `  A ) ) ) )  =  0  <->  (
( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  =  0  /\  (
pi  -  ( Im `  ( log `  A
) ) )  =  0 ) ) )
185184biimpa 487 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( ( ( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  +  ( pi 
-  ( Im `  ( log `  A ) ) ) )  =  0 )  ->  (
( ( 2  x.  pi )  -  (
Im `  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) ) ) )  =  0  /\  (
pi  -  ( Im `  ( log `  A
) ) )  =  0 ) )
186172, 185syldan 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
( 2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  =  0  /\  ( pi  -  (
Im `  ( log `  A ) ) )  =  0 ) )
187186simprd 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( pi  -  ( Im `  ( log `  A ) ) )  =  0 )
188158adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( Im `  ( log `  A
) )  e.  CC )
189 subeq0 9900 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( pi  e.  CC  /\  ( Im `  ( log `  A ) )  e.  CC )  ->  (
( pi  -  (
Im `  ( log `  A ) ) )  =  0  <->  pi  =  ( Im `  ( log `  A ) ) ) )
19026, 188, 189sylancr 669 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
pi  -  ( Im `  ( log `  A
) ) )  =  0  <->  pi  =  (
Im `  ( log `  A ) ) ) )
191187, 190mpbid 214 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  pi  =  ( Im `  ( log `  A ) ) )
192191eqcomd 2457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( Im `  ( log `  A
) )  =  pi )
193 lognegb 23539 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u A  e.  RR+  <->  (
Im `  ( log `  A ) )  =  pi ) )
1941933adant3 1028 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u A  e.  RR+  <->  ( Im `  ( log `  A
) )  =  pi ) )
195194adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( -u A  e.  RR+  <->  ( Im `  ( log `  A ) )  =  pi ) )
196192, 195mpbird 236 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  -u A  e.  RR+ )
197 rpaddcl 11323 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR+  /\  -u A  e.  RR+ )  ->  (
1  +  -u A
)  e.  RR+ )
198153, 196, 197sylancr 669 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  +  -u A )  e.  RR+ )
199152, 198eqeltrrd 2530 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  -  A )  e.  RR+ )
200199rpreccld 11351 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( 1  /  ( 1  -  A ) )  e.  RR+ )
201200relogcld 23572 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( log `  ( 1  /  (
1  -  A ) ) )  e.  RR )
202 negsubdi2 9933 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  ( 1  -  A ) )
20344, 9, 202sylancl 668 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u ( A  -  1 )  =  ( 1  -  A ) )
204203oveq1d 6305 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u ( A  -  1 )  /  -u A
)  =  ( ( 1  -  A )  /  -u A ) )
20557, 44, 58div2negd 10398 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u ( A  -  1 )  /  -u A
)  =  ( ( A  -  1 )  /  A ) )
206204, 205eqtr3d 2487 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  /  -u A
)  =  ( ( A  -  1 )  /  A ) )
207206adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
1  -  A )  /  -u A )  =  ( ( A  - 
1 )  /  A
) )
208199, 196rpdivcld 11358 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
1  -  A )  /  -u A )  e.  RR+ )
209207, 208eqeltrrd 2530 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( ( A  -  1 )  /  A )  e.  RR+ )
210209relogcld 23572 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( log `  ( ( A  - 
1 )  /  A
) )  e.  RR )
211201, 210readdcld 9670 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( ( log `  ( 1  / 
( 1  -  A
) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) )  e.  RR )
212211reim0d 13288 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  =  0 )
213212oveq2d 6306 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  =  ( ( 2  x.  pi )  -  0 ) )
214186simpld 461 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
2  x.  pi )  -  ( Im `  ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) ) )  =  0 )
215213, 214eqtr3d 2487 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  /\  ( 3  x.  pi )  =  ( T  /  _i ) )  ->  ( (
2  x.  pi )  -  0 )  =  0 )
216215ex 436 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 3  x.  pi )  =  ( T  /  _i )  ->  (
( 2  x.  pi )  -  0 )  =  0 ) )
217216necon3d 2645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( 2  x.  pi )  -  0 )  =/=  0  -> 
( 3  x.  pi )  =/=  ( T  /  _i ) ) )
218149, 217mpi 20 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  x.  pi )  =/=  ( T  /  _i ) )
219 ltlen 9735 . . . . . . . . 9  |-  ( ( ( T  /  _i )  e.  RR  /\  (
3  x.  pi )  e.  RR )  -> 
( ( T  /  _i )  <  ( 3  x.  pi )  <->  ( ( T  /  _i )  <_ 
( 3  x.  pi )  /\  ( 3  x.  pi )  =/=  ( T  /  _i ) ) ) )
220106, 162, 219sylancl 668 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  <  ( 3  x.  pi )  <->  ( ( T  /  _i )  <_ 
( 3  x.  pi )  /\  ( 3  x.  pi )  =/=  ( T  /  _i ) ) ) )
221147, 218, 220mpbir2and 933 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  < 
( 3  x.  pi ) )
222221, 31syl6breqr 4443 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  < 
( ( 3  / 
2 )  x.  (
2  x.  pi ) ) )
22324a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
3  /  2 )  e.  RR )
224 ltdivmul2 10482 . . . . . . 7  |-  ( ( ( T  /  _i )  e.  RR  /\  (
3  /  2 )  e.  RR  /\  (
( 2  x.  pi )  e.  RR  /\  0  <  ( 2  x.  pi ) ) )  -> 
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  <  (
3  /  2 )  <-> 
( T  /  _i )  <  ( ( 3  /  2 )  x.  ( 2  x.  pi ) ) ) )
225106, 223, 113, 117, 224syl112anc 1272 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  <  ( 3  /  2 )  <->  ( T  /  _i )  <  (
( 3  /  2
)  x.  ( 2  x.  pi ) ) ) )
226222, 225mpbird 236 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  < 
( 3  /  2
) )
22787oveq1i 6300 . . . . . 6  |-  ( 3  /  2 )  =  ( ( 2  +  1 )  /  2
)
2281, 9, 1, 28divdiri 10364 . . . . . 6  |-  ( ( 2  +  1 )  /  2 )  =  ( ( 2  / 
2 )  +  ( 1  /  2 ) )
229 2div2e1 10732 . . . . . . 7  |-  ( 2  /  2 )  =  1
230229oveq1i 6300 . . . . . 6  |-  ( ( 2  /  2 )  +  ( 1  / 
2 ) )  =  ( 1  +  ( 1  /  2 ) )
231227, 228, 2303eqtri 2477 . . . . 5  |-  ( 3  /  2 )  =  ( 1  +  ( 1  /  2 ) )
232226, 231syl6breq 4442 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  < 
( 1  +  ( 1  /  2 ) ) )
2332a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  e.  RR )
234127, 124, 233ltsubaddd 10209 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )  <  1  <->  (
( T  /  _i )  /  ( 2  x.  pi ) )  < 
( 1  +  ( 1  /  2 ) ) ) )
235232, 234mpbird 236 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  <  1 )
236104, 235syl5eqbr 4436 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  <  1 )
237130, 236jca 535 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 2  <  N  /\  N  <  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622    \ cdif 3401   {csn 3968   class class class wbr 4402   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540   _ici 9541    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860   -ucneg 9861    / cdiv 10269   2c2 10659   3c3 10660   4c4 10661   ZZcz 10937   RR+crp 11302   Recre 13160   Imcim 13161   picpi 14119   logclog 23504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-ef 14121  df-sin 14123  df-cos 14124  df-pi 14126  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822  df-log 23506
This theorem is referenced by:  ang180lem3  23740
  Copyright terms: Public domain W3C validator