MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem1 Structured version   Unicode version

Theorem ang180lem1 23603
Description: Lemma for ang180 23608. Show that the "revolution number"  N is an integer, using efeq1 23343 to show that since the product of the three arguments  A ,  1  / 
( 1  -  A
) ,  ( A  -  1 )  /  A is  -u 1, the sum of the logarithms must be an integer multiple of  2
pi _i away from  pi _i  =  log ( -u 1 ). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
ang180lem1.2  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
ang180lem1.3  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
Assertion
Ref Expression
ang180lem1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    T( x, y)    F( x, y)    N( x, y)

Proof of Theorem ang180lem1
StepHypRef Expression
1 picn 23279 . . . . . . 7  |-  pi  e.  CC
2 2re 10679 . . . . . . . . . 10  |-  2  e.  RR
3 pire 23278 . . . . . . . . . 10  |-  pi  e.  RR
42, 3remulcli 9656 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  RR
54recni 9654 . . . . . . . 8  |-  ( 2  x.  pi )  e.  CC
6 2pos 10701 . . . . . . . . . 10  |-  0  <  2
7 pipos 23280 . . . . . . . . . 10  |-  0  <  pi
82, 3, 6, 7mulgt0ii 9767 . . . . . . . . 9  |-  0  <  ( 2  x.  pi )
94, 8gt0ne0ii 10149 . . . . . . . 8  |-  ( 2  x.  pi )  =/=  0
105, 9pm3.2i 456 . . . . . . 7  |-  ( ( 2  x.  pi )  e.  CC  /\  (
2  x.  pi )  =/=  0 )
11 ax-icn 9597 . . . . . . . 8  |-  _i  e.  CC
12 ine0 10053 . . . . . . . 8  |-  _i  =/=  0
1311, 12pm3.2i 456 . . . . . . 7  |-  ( _i  e.  CC  /\  _i  =/=  0 )
14 divcan5 10308 . . . . . . 7  |-  ( ( pi  e.  CC  /\  ( ( 2  x.  pi )  e.  CC  /\  ( 2  x.  pi )  =/=  0 )  /\  ( _i  e.  CC  /\  _i  =/=  0 ) )  ->  ( (
_i  x.  pi )  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( pi  /  (
2  x.  pi ) ) )
151, 10, 13, 14mp3an 1360 . . . . . 6  |-  ( ( _i  x.  pi )  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( pi  /  (
2  x.  pi ) )
163, 7gt0ne0ii 10149 . . . . . . 7  |-  pi  =/=  0
17 recdiv 10312 . . . . . . 7  |-  ( ( ( ( 2  x.  pi )  e.  CC  /\  ( 2  x.  pi )  =/=  0 )  /\  ( pi  e.  CC  /\  pi  =/=  0 ) )  ->  ( 1  /  ( ( 2  x.  pi )  /  pi ) )  =  ( pi  /  ( 2  x.  pi ) ) )
185, 9, 1, 16, 17mp4an 677 . . . . . 6  |-  ( 1  /  ( ( 2  x.  pi )  /  pi ) )  =  ( pi  /  ( 2  x.  pi ) )
192recni 9654 . . . . . . . 8  |-  2  e.  CC
2019, 1, 16divcan4i 10353 . . . . . . 7  |-  ( ( 2  x.  pi )  /  pi )  =  2
2120oveq2i 6316 . . . . . 6  |-  ( 1  /  ( ( 2  x.  pi )  /  pi ) )  =  ( 1  /  2 )
2215, 18, 213eqtr2i 2464 . . . . 5  |-  ( ( _i  x.  pi )  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( 1  /  2
)
2322oveq2i 6316 . . . 4  |-  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( ( _i  x.  pi )  / 
( _i  x.  (
2  x.  pi ) ) ) )  =  ( ( T  / 
( _i  x.  (
2  x.  pi ) ) )  -  (
1  /  2 ) )
24 ang180lem1.2 . . . . . 6  |-  T  =  ( ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) )  +  ( log `  A ) )
25 ax-1cn 9596 . . . . . . . . . . 11  |-  1  e.  CC
26 simp1 1005 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  e.  CC )
27 subcl 9873 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
2825, 26, 27sylancr 667 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  e.  CC )
29 simp3 1007 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  1 )
3029necomd 2702 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  =/=  A )
31 subeq0 9899 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
3225, 26, 31sylancr 667 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
3332necon3bid 2689 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  -  A
)  =/=  0  <->  1  =/=  A ) )
3430, 33mpbird 235 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  -  A )  =/=  0 )
3528, 34reccld 10375 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  e.  CC )
3628, 34recne0d 10376 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =/=  0 )
3735, 36logcld 23385 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( 1  / 
( 1  -  A
) ) )  e.  CC )
38 subcl 9873 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
3926, 25, 38sylancl 666 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  e.  CC )
40 simp2 1006 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  A  =/=  0 )
4139, 26, 40divcld 10382 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  e.  CC )
42 subeq0 9899 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  =  0  <-> 
A  =  1 ) )
4326, 25, 42sylancl 666 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =  0  <->  A  =  1 ) )
4443necon3bid 2689 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  =/=  0  <->  A  =/=  1 ) )
4529, 44mpbird 235 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( A  -  1 )  =/=  0 )
4639, 26, 45, 40divne0d 10398 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( A  -  1 )  /  A )  =/=  0 )
4741, 46logcld 23385 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )
4837, 47addcld 9661 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC )
4926, 40logcld 23385 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( log `  A )  e.  CC )
5048, 49addcld 9661 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) )  e.  CC )
5124, 50syl5eqel 2521 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  T  e.  CC )
5211, 1mulcli 9647 . . . . . 6  |-  ( _i  x.  pi )  e.  CC
5352a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  x.  pi )  e.  CC )
5411, 5mulcli 9647 . . . . . 6  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
5554a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  x.  ( 2  x.  pi ) )  e.  CC )
5611, 5, 12, 9mulne0i 10254 . . . . . 6  |-  ( _i  x.  ( 2  x.  pi ) )  =/=  0
5756a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  x.  ( 2  x.  pi ) )  =/=  0 )
5851, 53, 55, 57divsubdird 10421 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  -  (
_i  x.  pi )
)  /  ( _i  x.  ( 2  x.  pi ) ) )  =  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( ( _i  x.  pi )  /  (
_i  x.  ( 2  x.  pi ) ) ) ) )
59 ang180lem1.3 . . . . 5  |-  N  =  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )
6013a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
_i  e.  CC  /\  _i  =/=  0 ) )
6110a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 2  x.  pi )  e.  CC  /\  (
2  x.  pi )  =/=  0 ) )
62 divdiv1 10317 . . . . . . 7  |-  ( ( T  e.  CC  /\  ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( ( 2  x.  pi )  e.  CC  /\  ( 2  x.  pi )  =/=  0 ) )  -> 
( ( T  /  _i )  /  (
2  x.  pi ) )  =  ( T  /  ( _i  x.  ( 2  x.  pi ) ) ) )
6351, 60, 61, 62syl3anc 1264 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  =  ( T  /  (
_i  x.  ( 2  x.  pi ) ) ) )
6463oveq1d 6320 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  -  ( 1  /  2 ) )  =  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( 1  /  2
) ) )
6559, 64syl5eq 2482 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  =  ( ( T  /  ( _i  x.  ( 2  x.  pi ) ) )  -  ( 1  /  2
) ) )
6623, 58, 653eqtr4a 2496 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  -  (
_i  x.  pi )
)  /  ( _i  x.  ( 2  x.  pi ) ) )  =  N )
67 efsub 14132 . . . . . 6  |-  ( ( T  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( exp `  ( T  -  ( _i  x.  pi ) ) )  =  ( ( exp `  T )  /  ( exp `  ( _i  x.  pi ) ) ) )
6851, 52, 67sylancl 666 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( T  -  ( _i  x.  pi ) ) )  =  ( ( exp `  T
)  /  ( exp `  ( _i  x.  pi ) ) ) )
69 efipi 23293 . . . . . . 7  |-  ( exp `  ( _i  x.  pi ) )  =  -u
1
7069oveq2i 6316 . . . . . 6  |-  ( ( exp `  T )  /  ( exp `  (
_i  x.  pi )
) )  =  ( ( exp `  T
)  /  -u 1
)
7124fveq2i 5884 . . . . . . . . 9  |-  ( exp `  T )  =  ( exp `  ( ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )
72 efadd 14126 . . . . . . . . . . 11  |-  ( ( ( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  e.  CC  /\  ( log `  A )  e.  CC )  ->  ( exp `  (
( ( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) )  +  ( log `  A
) ) )  =  ( ( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  x.  ( exp `  ( log `  A ) ) ) )
7348, 49, 72syl2anc 665 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) )  +  ( log `  A ) ) )  =  ( ( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  x.  ( exp `  ( log `  A ) ) ) )
74 efadd 14126 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
1  /  ( 1  -  A ) ) )  e.  CC  /\  ( log `  ( ( A  -  1 )  /  A ) )  e.  CC )  -> 
( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  =  ( ( exp `  ( log `  (
1  /  ( 1  -  A ) ) ) )  x.  ( exp `  ( log `  (
( A  -  1 )  /  A ) ) ) ) )
7537, 47, 74syl2anc 665 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  =  ( ( exp `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  x.  ( exp `  ( log `  ( ( A  -  1 )  /  A ) ) ) ) )
76 eflog 23391 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  (
1  -  A ) )  e.  CC  /\  ( 1  /  (
1  -  A ) )  =/=  0 )  ->  ( exp `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  =  ( 1  / 
( 1  -  A
) ) )
7735, 36, 76syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( log `  (
1  /  ( 1  -  A ) ) ) )  =  ( 1  /  ( 1  -  A ) ) )
78 eflog 23391 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  - 
1 )  /  A
)  e.  CC  /\  ( ( A  - 
1 )  /  A
)  =/=  0 )  ->  ( exp `  ( log `  ( ( A  -  1 )  /  A ) ) )  =  ( ( A  -  1 )  /  A ) )
7941, 46, 78syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( log `  (
( A  -  1 )  /  A ) ) )  =  ( ( A  -  1 )  /  A ) )
8077, 79oveq12d 6323 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  ( log `  ( 1  / 
( 1  -  A
) ) ) )  x.  ( exp `  ( log `  ( ( A  -  1 )  /  A ) ) ) )  =  ( ( 1  /  ( 1  -  A ) )  x.  ( ( A  -  1 )  /  A ) ) )
8135, 41mulcomd 9663 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  /  (
1  -  A ) )  x.  ( ( A  -  1 )  /  A ) )  =  ( ( ( A  -  1 )  /  A )  x.  ( 1  /  (
1  -  A ) ) ) )
8225a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  1  e.  CC )
8382, 28, 34div2negd 10397 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  /  -u (
1  -  A ) )  =  ( 1  /  ( 1  -  A ) ) )
84 negsubdi2 9932 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  A  e.  CC )  -> 
-u ( 1  -  A )  =  ( A  -  1 ) )
8525, 26, 84sylancr 667 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u (
1  -  A )  =  ( A  - 
1 ) )
8685oveq2d 6321 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( -u 1  /  -u (
1  -  A ) )  =  ( -u
1  /  ( A  -  1 ) ) )
8783, 86eqtr3d 2472 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
1  /  ( 1  -  A ) )  =  ( -u 1  /  ( A  - 
1 ) ) )
8887oveq2d 6321 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( A  - 
1 )  /  A
)  x.  ( 1  /  ( 1  -  A ) ) )  =  ( ( ( A  -  1 )  /  A )  x.  ( -u 1  / 
( A  -  1 ) ) ) )
89 neg1cn 10713 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
9089a1i 11 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  -u 1  e.  CC )
9190, 39, 26, 45, 40dmdcand 10411 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( A  - 
1 )  /  A
)  x.  ( -u
1  /  ( A  -  1 ) ) )  =  ( -u
1  /  A ) )
9281, 88, 913eqtrd 2474 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( 1  /  (
1  -  A ) )  x.  ( ( A  -  1 )  /  A ) )  =  ( -u 1  /  A ) )
9375, 80, 923eqtrd 2474 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( log `  ( 1  /  (
1  -  A ) ) )  +  ( log `  ( ( A  -  1 )  /  A ) ) ) )  =  (
-u 1  /  A
) )
94 eflog 23391 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  A )
9526, 40, 94syl2anc 665 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( log `  A
) )  =  A )
9693, 95oveq12d 6323 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  (
( log `  (
1  /  ( 1  -  A ) ) )  +  ( log `  ( ( A  - 
1 )  /  A
) ) ) )  x.  ( exp `  ( log `  A ) ) )  =  ( (
-u 1  /  A
)  x.  A ) )
9790, 26, 40divcan1d 10383 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( -u 1  /  A
)  x.  A )  =  -u 1 )
9873, 96, 973eqtrd 2474 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( ( ( log `  ( 1  /  ( 1  -  A ) ) )  +  ( log `  (
( A  -  1 )  /  A ) ) )  +  ( log `  A ) ) )  =  -u
1 )
9971, 98syl5eq 2482 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  T )  = 
-u 1 )
10099oveq1d 6320 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  T
)  /  -u 1
)  =  ( -u
1  /  -u 1
) )
101 neg1ne0 10715 . . . . . . . 8  |-  -u 1  =/=  0
10289, 101dividi 10339 . . . . . . 7  |-  ( -u
1  /  -u 1
)  =  1
103100, 102syl6eq 2486 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  T
)  /  -u 1
)  =  1 )
10470, 103syl5eq 2482 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  T
)  /  ( exp `  ( _i  x.  pi ) ) )  =  1 )
10568, 104eqtrd 2470 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( exp `  ( T  -  ( _i  x.  pi ) ) )  =  1 )
106 subcl 9873 . . . . . 6  |-  ( ( T  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( T  -  (
_i  x.  pi )
)  e.  CC )
10751, 52, 106sylancl 666 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  -  ( _i  x.  pi ) )  e.  CC )
108 efeq1 23343 . . . . 5  |-  ( ( T  -  ( _i  x.  pi ) )  e.  CC  ->  (
( exp `  ( T  -  ( _i  x.  pi ) ) )  =  1  <->  ( ( T  -  ( _i  x.  pi ) )  / 
( _i  x.  (
2  x.  pi ) ) )  e.  ZZ ) )
109107, 108syl 17 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( exp `  ( T  -  ( _i  x.  pi ) ) )  =  1  <->  ( ( T  -  ( _i  x.  pi ) )  / 
( _i  x.  (
2  x.  pi ) ) )  e.  ZZ ) )
110105, 109mpbid 213 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  -  (
_i  x.  pi )
)  /  ( _i  x.  ( 2  x.  pi ) ) )  e.  ZZ )
11166, 110eqeltrrd 2518 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  ZZ )
11211a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  e.  CC )
11312a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  _i  =/=  0 )
11451, 112, 113divcld 10382 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  CC )
1155a1i 11 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  e.  CC )
1169a1i 11 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
2  x.  pi )  =/=  0 )
117114, 115, 116divcan1d 10383 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  x.  ( 2  x.  pi ) )  =  ( T  /  _i ) )
11859oveq1i 6315 . . . . . 6  |-  ( N  +  ( 1  / 
2 ) )  =  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) )
119114, 115, 116divcld 10382 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  CC )
120 halfre 10828 . . . . . . . 8  |-  ( 1  /  2 )  e.  RR
121120recni 9654 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
122 npcan 9883 . . . . . . 7  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( ( ( ( T  /  _i )  /  ( 2  x.  pi ) )  -  ( 1  /  2
) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  /  ( 2  x.  pi ) ) )
123119, 121, 122sylancl 666 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( ( T  /  _i )  / 
( 2  x.  pi ) )  -  (
1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
124118, 123syl5eq 2482 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  +  ( 1  /  2 ) )  =  ( ( T  /  _i )  / 
( 2  x.  pi ) ) )
125111zred 11040 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  N  e.  RR )
126 readdcl 9621 . . . . . 6  |-  ( ( N  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( N  +  ( 1  /  2
) )  e.  RR )
127125, 120, 126sylancl 666 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  +  ( 1  /  2 ) )  e.  RR )
128124, 127eqeltrrd 2518 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( T  /  _i )  /  ( 2  x.  pi ) )  e.  RR )
129 remulcl 9623 . . . 4  |-  ( ( ( ( T  /  _i )  /  (
2  x.  pi ) )  e.  RR  /\  ( 2  x.  pi )  e.  RR )  ->  ( ( ( T  /  _i )  / 
( 2  x.  pi ) )  x.  (
2  x.  pi ) )  e.  RR )
130128, 4, 129sylancl 666 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  (
( ( T  /  _i )  /  (
2  x.  pi ) )  x.  ( 2  x.  pi ) )  e.  RR )
131117, 130eqeltrrd 2518 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( T  /  _i )  e.  RR )
132111, 131jca 534 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  A  =/=  1 )  ->  ( N  e.  ZZ  /\  ( T  /  _i )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625    \ cdif 3439   {csn 4002   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539   _ici 9540    + caddc 9541    x. cmul 9543    - cmin 9859   -ucneg 9860    / cdiv 10268   2c2 10659   ZZcz 10937   Imcim 13140   expce 14092   picpi 14097   logclog 23369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-pi 14104  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371
This theorem is referenced by:  ang180lem2  23604  ang180lem3  23605
  Copyright terms: Public domain W3C validator