MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anddi Structured version   Unicode version

Theorem anddi 871
Description: Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
anddi  |-  ( ( ( ph  \/  ps )  /\  ( ch  \/  th ) )  <->  ( (
( ph  /\  ch )  \/  ( ph  /\  th ) )  \/  (
( ps  /\  ch )  \/  ( ps  /\ 
th ) ) ) )

Proof of Theorem anddi
StepHypRef Expression
1 andir 869 . 2  |-  ( ( ( ph  \/  ps )  /\  ( ch  \/  th ) )  <->  ( ( ph  /\  ( ch  \/  th ) )  \/  ( ps  /\  ( ch  \/  th ) ) ) )
2 andi 868 . . 3  |-  ( (
ph  /\  ( ch  \/  th ) )  <->  ( ( ph  /\  ch )  \/  ( ph  /\  th ) ) )
3 andi 868 . . 3  |-  ( ( ps  /\  ( ch  \/  th ) )  <-> 
( ( ps  /\  ch )  \/  ( ps  /\  th ) ) )
42, 3orbi12i 519 . 2  |-  ( ( ( ph  /\  ( ch  \/  th ) )  \/  ( ps  /\  ( ch  \/  th )
) )  <->  ( (
( ph  /\  ch )  \/  ( ph  /\  th ) )  \/  (
( ps  /\  ch )  \/  ( ps  /\ 
th ) ) ) )
51, 4bitri 249 1  |-  ( ( ( ph  \/  ps )  /\  ( ch  \/  th ) )  <->  ( (
( ph  /\  ch )  \/  ( ph  /\  th ) )  \/  (
( ps  /\  ch )  \/  ( ps  /\ 
th ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ wo 366    /\ wa 367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369
This theorem is referenced by:  prnebg  4154  funun  5611  disjxpin  27880  icoreclin  31274  undif3VD  36713
  Copyright terms: Public domain W3C validator