MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancomst Structured version   Unicode version

Theorem ancomst 452
Description: Closed form of ancoms 453. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomst  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )

Proof of Theorem ancomst
StepHypRef Expression
1 ancom 450 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21imbi1i 325 1  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  ralcomf  2977  ovolgelb  21081  itg2leub  21330  nmoubi  24309  expcomdg  31506
  Copyright terms: Public domain W3C validator