MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandir Structured version   Unicode version

Theorem anandir 825
Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
anandir  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  ch )
) )

Proof of Theorem anandir
StepHypRef Expression
1 anidm 644 . . 3  |-  ( ( ch  /\  ch )  <->  ch )
21anbi2i 694 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ch ) )  <->  ( ( ph  /\  ps )  /\  ch ) )
3 an4 820 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ch ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  ch )
) )
42, 3bitr3i 251 1  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  ch )
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  anandi3r  980  cadanOLD  1434  disjxun  4288  fununi  5482  imadif  5491  elfzuzb  11445  5oalem3  25057  5oalem5  25059  wfrlem5  27726  frrlem5  27770  frgra3v  30591  un2122  31520
  Copyright terms: Public domain W3C validator