MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi8 Structured version   Unicode version

Theorem anabsi8 827
Description: Absorption of antecedent into conjunction. (Contributed by NM, 26-Sep-1999.)
Hypothesis
Ref Expression
anabsi8.1  |-  ( ps 
->  ( ( ps  /\  ph )  ->  ch )
)
Assertion
Ref Expression
anabsi8  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabsi8
StepHypRef Expression
1 anabsi8.1 . . 3  |-  ( ps 
->  ( ( ps  /\  ph )  ->  ch )
)
21anabsi5 824 . 2  |-  ( ( ps  /\  ph )  ->  ch )
32ancoms 454 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by:  subuhgr  39095  subupgr  39096  subumgr  39097  subusgr  39098
  Copyright terms: Public domain W3C validator