MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi6 Structured version   Unicode version

Theorem anabsi6 825
Description: Absorption of antecedent into conjunction. (Contributed by NM, 14-Aug-2000.)
Hypothesis
Ref Expression
anabsi6.1  |-  ( ph  ->  ( ( ps  /\  ph )  ->  ch )
)
Assertion
Ref Expression
anabsi6  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabsi6
StepHypRef Expression
1 anabsi6.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ph )  ->  ch )
)
21ancomsd 455 . 2  |-  ( ph  ->  ( ( ph  /\  ps )  ->  ch )
)
32anabsi5 824 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by:  anabsi7  826  pjnormssi  27763
  Copyright terms: Public domain W3C validator