MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an6 Structured version   Unicode version

Theorem an6 1299
Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.)
Assertion
Ref Expression
an6  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  ( th  /\  ta  /\  et ) )  <->  ( ( ph  /\  th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et ) ) )

Proof of Theorem an6
StepHypRef Expression
1 an4 820 . . 3  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  ( ( th  /\  ta )  /\  et ) )  <->  ( ( (
ph  /\  ps )  /\  ( th  /\  ta ) )  /\  ( ch  /\  et ) ) )
2 an4 820 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( th  /\  ta ) )  <->  ( ( ph  /\  th )  /\  ( ps  /\  ta )
) )
32anbi1i 695 . . 3  |-  ( ( ( ( ph  /\  ps )  /\  ( th  /\  ta ) )  /\  ( ch  /\  et ) )  <->  ( (
( ph  /\  th )  /\  ( ps  /\  ta ) )  /\  ( ch  /\  et ) ) )
41, 3bitri 249 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  ( ( th  /\  ta )  /\  et ) )  <->  ( ( (
ph  /\  th )  /\  ( ps  /\  ta ) )  /\  ( ch  /\  et ) ) )
5 df-3an 967 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
6 df-3an 967 . . 3  |-  ( ( th  /\  ta  /\  et )  <->  ( ( th 
/\  ta )  /\  et ) )
75, 6anbi12i 697 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  ( th  /\  ta  /\  et ) )  <->  ( (
( ph  /\  ps )  /\  ch )  /\  (
( th  /\  ta )  /\  et ) ) )
8 df-3an 967 . 2  |-  ( ( ( ph  /\  th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et ) )  <-> 
( ( ( ph  /\ 
th )  /\  ( ps  /\  ta ) )  /\  ( ch  /\  et ) ) )
94, 7, 83bitr4i 277 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  ( th  /\  ta  /\  et ) )  <->  ( ( ph  /\  th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  3an6  1300  ltdiv2OLD  10330  elfzuzb  11565  ptbasin  19283  iimulcl  20642  nb3grapr  23514  nb3grapr2  23515  txpcon  27266  fzadd2  28786  paddasslem9  33811  paddasslem10  33812
  Copyright terms: Public domain W3C validator