Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpexg Structured version   Unicode version

Theorem altxpexg 29555
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  XX.  B
)  e.  _V )

Proof of Theorem altxpexg
StepHypRef Expression
1 altxpsspw 29554 . 2  |-  ( A 
XX.  B )  C_  ~P ~P ( A  u.  ~P B )
2 pwexg 4637 . . . 4  |-  ( B  e.  W  ->  ~P B  e.  _V )
3 unexg 6596 . . . 4  |-  ( ( A  e.  V  /\  ~P B  e.  _V )  ->  ( A  u.  ~P B )  e.  _V )
42, 3sylan2 474 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  ~P B )  e.  _V )
5 pwexg 4637 . . 3  |-  ( ( A  u.  ~P B
)  e.  _V  ->  ~P ( A  u.  ~P B )  e.  _V )
6 pwexg 4637 . . 3  |-  ( ~P ( A  u.  ~P B )  e.  _V  ->  ~P ~P ( A  u.  ~P B )  e.  _V )
74, 5, 63syl 20 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ~P ( A  u.  ~P B )  e.  _V )
8 ssexg 4599 . 2  |-  ( ( ( A  XX.  B
)  C_  ~P ~P ( A  u.  ~P B )  /\  ~P ~P ( A  u.  ~P B )  e.  _V )  ->  ( A  XX.  B )  e.  _V )
91, 7, 8sylancr 663 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  XX.  B
)  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   _Vcvv 3118    u. cun 3479    C_ wss 3481   ~Pcpw 4016    XX. caltxp 29534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-pw 4018  df-sn 4034  df-pr 4036  df-uni 4252  df-altop 29535  df-altxp 29536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator