Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthsn Structured version   Unicode version

Theorem altopthsn 28128
Description: Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
altopthsn  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )

Proof of Theorem altopthsn
StepHypRef Expression
1 df-altop 28125 . . 3  |-  << A ,  B >>  =  { { A } ,  { A ,  { B } } }
2 df-altop 28125 . . 3  |-  << C ,  D >>  =  { { C } ,  { C ,  { D } } }
31, 2eqeq12i 2471 . 2  |-  ( << A ,  B >>  =  << C ,  D >>  <->  { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } } )
4 snex 4633 . . . . . 6  |-  { A }  e.  _V
5 prex 4634 . . . . . 6  |-  { A ,  { B } }  e.  _V
6 snex 4633 . . . . . 6  |-  { C }  e.  _V
7 prex 4634 . . . . . 6  |-  { C ,  { D } }  e.  _V
84, 5, 6, 7preq12b 4148 . . . . 5  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  <->  ( ( { A }  =  { C }  /\  { A ,  { B } }  =  { C ,  { D } } )  \/  ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } ) ) )
9 simpl 457 . . . . . 6  |-  ( ( { A }  =  { C }  /\  { A ,  { B } }  =  { C ,  { D } } )  ->  { A }  =  { C } )
10 snsspr1 4122 . . . . . . . . 9  |-  { A }  C_  { A ,  { B } }
11 sseq2 3478 . . . . . . . . 9  |-  ( { A ,  { B } }  =  { C }  ->  ( { A }  C_  { A ,  { B } }  <->  { A }  C_  { C } ) )
1210, 11mpbii 211 . . . . . . . 8  |-  ( { A ,  { B } }  =  { C }  ->  { A }  C_  { C }
)
1312adantl 466 . . . . . . 7  |-  ( ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } )  ->  { A }  C_ 
{ C } )
14 snsspr1 4122 . . . . . . . . 9  |-  { C }  C_  { C ,  { D } }
15 sseq2 3478 . . . . . . . . 9  |-  ( { A }  =  { C ,  { D } }  ->  ( { C }  C_  { A } 
<->  { C }  C_  { C ,  { D } } ) )
1614, 15mpbiri 233 . . . . . . . 8  |-  ( { A }  =  { C ,  { D } }  ->  { C }  C_  { A }
)
1716adantr 465 . . . . . . 7  |-  ( ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } )  ->  { C }  C_ 
{ A } )
1813, 17eqssd 3473 . . . . . 6  |-  ( ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } )  ->  { A }  =  { C } )
199, 18jaoi 379 . . . . 5  |-  ( ( ( { A }  =  { C }  /\  { A ,  { B } }  =  { C ,  { D } } )  \/  ( { A }  =  { C ,  { D } }  /\  { A ,  { B } }  =  { C } ) )  ->  { A }  =  { C } )
208, 19sylbi 195 . . . 4  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { A }  =  { C } )
21 uneq1 3603 . . . . . . . . . 10  |-  ( { A }  =  { C }  ->  ( { A }  u.  { { B } } )  =  ( { C }  u.  { { B } } ) )
22 df-pr 3980 . . . . . . . . . 10  |-  { A ,  { B } }  =  ( { A }  u.  { { B } } )
23 df-pr 3980 . . . . . . . . . 10  |-  { C ,  { B } }  =  ( { C }  u.  { { B } } )
2421, 22, 233eqtr4g 2517 . . . . . . . . 9  |-  ( { A }  =  { C }  ->  { A ,  { B } }  =  { C ,  { B } } )
2524preq2d 4061 . . . . . . . 8  |-  ( { A }  =  { C }  ->  { { A } ,  { A ,  { B } } }  =  { { A } ,  { C ,  { B } } } )
26 preq1 4054 . . . . . . . 8  |-  ( { A }  =  { C }  ->  { { A } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { B } } } )
2725, 26eqtrd 2492 . . . . . . 7  |-  ( { A }  =  { C }  ->  { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { B } } } )
2827eqeq1d 2453 . . . . . 6  |-  ( { A }  =  { C }  ->  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  <->  { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } } ) )
2928biimpd 207 . . . . 5  |-  ( { A }  =  { C }  ->  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } } ) )
30 prex 4634 . . . . . . 7  |-  { C ,  { B } }  e.  _V
3130, 7preqr2 4147 . . . . . 6  |-  ( { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { C ,  { B } }  =  { C ,  { D } } )
32 snex 4633 . . . . . . 7  |-  { B }  e.  _V
33 snex 4633 . . . . . . 7  |-  { D }  e.  _V
3432, 33preqr2 4147 . . . . . 6  |-  ( { C ,  { B } }  =  { C ,  { D } }  ->  { B }  =  { D } )
3531, 34syl 16 . . . . 5  |-  ( { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  { B }  =  { D } )
3629, 35syl6com 35 . . . 4  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  ( { A }  =  { C }  ->  { B }  =  { D } ) )
3720, 36jcai 536 . . 3  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  ->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
38 preq2 4055 . . . . 5  |-  ( { B }  =  { D }  ->  { C ,  { B } }  =  { C ,  { D } } )
3938preq2d 4061 . . . 4  |-  ( { B }  =  { D }  ->  { { C } ,  { C ,  { B } } }  =  { { C } ,  { C ,  { D } } } )
4027, 39sylan9eq 2512 . . 3  |-  ( ( { A }  =  { C }  /\  { B }  =  { D } )  ->  { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } } )
4137, 40impbii 188 . 2  |-  ( { { A } ,  { A ,  { B } } }  =  { { C } ,  { C ,  { D } } }  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
423, 41bitri 249 1  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    u. cun 3426    C_ wss 3428   {csn 3977   {cpr 3979   <<caltop 28123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-v 3072  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-sn 3978  df-pr 3980  df-altop 28125
This theorem is referenced by:  altopeq12  28129  altopth1  28132  altopth2  28133  altopthg  28134  altopthbg  28135
  Copyright terms: Public domain W3C validator