Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthbg Structured version   Unicode version

Theorem altopthbg 27928
Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.)
Assertion
Ref Expression
altopthbg  |-  ( ( A  e.  V  /\  D  e.  W )  ->  ( << A ,  B >>  =  << C ,  D >>  <->  ( A  =  C  /\  B  =  D )
) )

Proof of Theorem altopthbg
StepHypRef Expression
1 altopthsn 27921 . 2  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
2 sneqbg 4040 . . 3  |-  ( A  e.  V  ->  ( { A }  =  { C }  <->  A  =  C
) )
3 sneqbg 4040 . . . 4  |-  ( D  e.  W  ->  ( { D }  =  { B }  <->  D  =  B
) )
4 eqcom 2443 . . . 4  |-  ( { B }  =  { D }  <->  { D }  =  { B } )
5 eqcom 2443 . . . 4  |-  ( B  =  D  <->  D  =  B )
63, 4, 53bitr4g 288 . . 3  |-  ( D  e.  W  ->  ( { B }  =  { D }  <->  B  =  D
) )
72, 6bi2anan9 863 . 2  |-  ( ( A  e.  V  /\  D  e.  W )  ->  ( ( { A }  =  { C }  /\  { B }  =  { D } )  <-> 
( A  =  C  /\  B  =  D ) ) )
81, 7syl5bb 257 1  |-  ( ( A  e.  V  /\  D  e.  W )  ->  ( << A ,  B >>  =  << C ,  D >>  <->  ( A  =  C  /\  B  =  D )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   {csn 3874   <<caltop 27916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-v 2972  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-sn 3875  df-pr 3877  df-altop 27918
This theorem is referenced by:  altopthb  27930
  Copyright terms: Public domain W3C validator