Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthbg Structured version   Unicode version

Theorem altopthbg 29545
 Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.)
Assertion
Ref Expression
altopthbg

Proof of Theorem altopthbg
StepHypRef Expression
1 altopthsn 29538 . 2
2 sneqbg 4203 . . 3
3 sneqbg 4203 . . . 4
4 eqcom 2476 . . . 4
5 eqcom 2476 . . . 4
63, 4, 53bitr4g 288 . . 3
72, 6bi2anan9 871 . 2
81, 7syl5bb 257 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1379   wcel 1767  csn 4033  caltop 29533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-sn 4034  df-pr 4036  df-altop 29535 This theorem is referenced by:  altopthb  29547
 Copyright terms: Public domain W3C validator