MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrot3 Structured version   Visualization version   Unicode version

Theorem alrot3 1934
Description: Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
alrot3  |-  ( A. x A. y A. z ph 
<-> 
A. y A. z A. x ph )

Proof of Theorem alrot3
StepHypRef Expression
1 alcom 1933 . 2  |-  ( A. x A. y A. z ph 
<-> 
A. y A. x A. z ph )
2 alcom 1933 . . 3  |-  ( A. x A. z ph  <->  A. z A. x ph )
32albii 1701 . 2  |-  ( A. y A. x A. z ph 
<-> 
A. y A. z A. x ph )
41, 3bitri 257 1  |-  ( A. x A. y A. z ph 
<-> 
A. y A. z A. x ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189   A.wal 1452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-11 1930
This theorem depends on definitions:  df-bi 190
This theorem is referenced by:  alrot4  1935  nfnid  4642  raliunxp  4992  dff13  6183  undmrnresiss  36254
  Copyright terms: Public domain W3C validator