MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimdh Structured version   Visualization version   Unicode version

Theorem alrimdh 1734
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 1998 and 19.21h 2000. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
alrimdh.1  |-  ( ph  ->  A. x ph )
alrimdh.2  |-  ( ps 
->  A. x ps )
alrimdh.3  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
alrimdh  |-  ( ph  ->  ( ps  ->  A. x ch ) )

Proof of Theorem alrimdh
StepHypRef Expression
1 alrimdh.2 . 2  |-  ( ps 
->  A. x ps )
2 alrimdh.1 . . 3  |-  ( ph  ->  A. x ph )
3 alrimdh.3 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
42, 3alimdh 1700 . 2  |-  ( ph  ->  ( A. x ps 
->  A. x ch )
)
51, 4syl5 33 1  |-  ( ph  ->  ( ps  ->  A. x ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1680  ax-4 1693
This theorem is referenced by:  alrimdv  1786  ax12indn  32560  gen21nv  37043
  Copyright terms: Public domain W3C validator