Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alnof Structured version   Visualization version   Unicode version

Theorem alnof 31074
Description: For all sets, F. is not true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
alnof  |-  A. x  -. F.

Proof of Theorem alnof
StepHypRef Expression
1 fal 1453 . 2  |-  -. F.
21ax-gen 1671 1  |-  A. x  -. F.
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1444   F. wfal 1451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671
This theorem depends on definitions:  df-bi 189  df-tru 1449  df-fal 1452
This theorem is referenced by:  nalf  31075
  Copyright terms: Public domain W3C validator