Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alneu Unicode version

Theorem alneu 27649
Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017.)
Assertion
Ref Expression
alneu  |-  ( A. x ph  ->  -.  E! x ph )

Proof of Theorem alneu
StepHypRef Expression
1 eunex 4335 . . 3  |-  ( E! x ph  ->  E. x  -.  ph )
2 exnal 1580 . . 3  |-  ( E. x  -.  ph  <->  -.  A. x ph )
31, 2sylib 189 . 2  |-  ( E! x ph  ->  -.  A. x ph )
43con2i 114 1  |-  ( A. x ph  ->  -.  E! x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1546   E.wex 1547   E!weu 2240
This theorem is referenced by:  eu2ndop1stv  27650
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-nul 4281  ax-pow 4320
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244
  Copyright terms: Public domain W3C validator