MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvgblem Structured version   Visualization version   Unicode version

Theorem algcvgblem 14615
Description: Lemma for algcvgb 14616. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )

Proof of Theorem algcvgblem
StepHypRef Expression
1 imor 419 . . . . 5  |-  ( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) )
2 0re 9661 . . . . . . . . . . . . 13  |-  0  e.  RR
3 nn0re 10902 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  M  e.  RR )
43adantr 472 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
5 ltnle 9731 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  M  e.  RR )  ->  ( 0  <  M  <->  -.  M  <_  0 ) )
62, 4, 5sylancr 676 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  <_  0 ) )
7 nn0le0eq0 10922 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
87notbid 301 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( -.  M  <_  0  <->  -.  M  =  0 ) )
98adantr 472 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  M  <_ 
0  <->  -.  M  = 
0 ) )
106, 9bitrd 261 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  =  0 ) )
11 df-ne 2643 . . . . . . . . . . 11  |-  ( M  =/=  0  <->  -.  M  =  0 )
1210, 11syl6bbr 271 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  M  =/=  0 ) )
1312anbi2d 718 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  0  <  M )  <->  ( -.  N  =/=  0  /\  M  =/=  0 ) ) )
14 nne 2647 . . . . . . . . . . 11  |-  ( -.  N  =/=  0  <->  N  =  0 )
15 breq1 4398 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( N  <  M  <->  0  <  M ) )
1614, 15sylbi 200 . . . . . . . . . 10  |-  ( -.  N  =/=  0  -> 
( N  <  M  <->  0  <  M ) )
1716biimpar 493 . . . . . . . . 9  |-  ( ( -.  N  =/=  0  /\  0  <  M )  ->  N  <  M
)
1813, 17syl6bir 237 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  M  =/=  0 )  ->  N  <  M ) )
1918expd 443 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  < 
M ) ) )
20 ax-1 6 . . . . . . 7  |-  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) )
2119, 20jctir 547 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  -> 
( M  =/=  0  ->  N  <  M ) ) ) )
22 jaob 800 . . . . . 6  |-  ( ( ( -.  N  =/=  0  \/  N  < 
M )  ->  ( M  =/=  0  ->  N  <  M ) )  <->  ( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) ) ) )
2321, 22sylibr 217 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  \/  N  <  M )  ->  ( M  =/=  0  ->  N  <  M ) ) )
241, 23syl5bi 225 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( M  =/=  0  ->  N  < 
M ) ) )
25 nn0ge0 10919 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_  N )
2625adantl 473 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  N )
27 nn0re 10902 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  RR )
28 lelttr 9742 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <  M )  ->  0  <  M
) )
292, 28mp3an1 1377 . . . . . . . 8  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
3027, 3, 29syl2anr 486 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
3126, 30mpand 689 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  0  <  M ) )
3231, 12sylibd 222 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  M  =/=  0 ) )
3332imim2d 53 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( N  =/=  0  ->  M  =/=  0 ) ) )
3424, 33jcad 542 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
35 pm3.34 596 . . 3  |-  ( ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) )  -> 
( N  =/=  0  ->  N  <  M ) )
3634, 35impbid1 208 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
37 con34b 299 . . . 4  |-  ( ( M  =  0  ->  N  =  0 )  <-> 
( -.  N  =  0  ->  -.  M  =  0 ) )
38 df-ne 2643 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
3938, 11imbi12i 333 . . . 4  |-  ( ( N  =/=  0  ->  M  =/=  0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) )
4037, 39bitr4i 260 . . 3  |-  ( ( M  =  0  ->  N  =  0 )  <-> 
( N  =/=  0  ->  M  =/=  0 ) )
4140anbi2i 708 . 2  |-  ( ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  = 
0 ) )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) )
4236, 41syl6bbr 271 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   class class class wbr 4395   RRcr 9556   0cc0 9557    < clt 9693    <_ cle 9694   NN0cn0 10893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894
This theorem is referenced by:  algcvgb  14616
  Copyright terms: Public domain W3C validator