MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvga Structured version   Unicode version

Theorem algcvga 14292
Description: The countdown function  C remains  0 after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
Assertion
Ref Expression
algcvga  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Distinct variable groups:    z, C    z, F    z, R    z, S
Allowed substitution hints:    A( z)    K( z)    N( z)

Proof of Theorem algcvga
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3  |-  N  =  ( C `  A
)
2 algcvga.3 . . . 4  |-  C : S
--> NN0
32ffvelrni 6006 . . 3  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3syl5eqel 2546 . 2  |-  ( A  e.  S  ->  N  e.  NN0 )
5 nn0z 10883 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 eluz1 11086 . . . . 5  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  ( K  e.  ZZ  /\  N  <_  K ) ) )
7 fveq2 5848 . . . . . . . . . 10  |-  ( m  =  N  ->  ( R `  m )  =  ( R `  N ) )
87fveq2d 5852 . . . . . . . . 9  |-  ( m  =  N  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  N )
) )
98eqeq1d 2456 . . . . . . . 8  |-  ( m  =  N  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  N ) )  =  0 ) )
109imbi2d 314 . . . . . . 7  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  N )
)  =  0 ) ) )
11 fveq2 5848 . . . . . . . . . 10  |-  ( m  =  k  ->  ( R `  m )  =  ( R `  k ) )
1211fveq2d 5852 . . . . . . . . 9  |-  ( m  =  k  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  k )
) )
1312eqeq1d 2456 . . . . . . . 8  |-  ( m  =  k  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
1413imbi2d 314 . . . . . . 7  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 ) ) )
15 fveq2 5848 . . . . . . . . . 10  |-  ( m  =  ( k  +  1 )  ->  ( R `  m )  =  ( R `  ( k  +  1 ) ) )
1615fveq2d 5852 . . . . . . . . 9  |-  ( m  =  ( k  +  1 )  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  ( k  +  1 ) ) ) )
1716eqeq1d 2456 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
1817imbi2d 314 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
19 fveq2 5848 . . . . . . . . . 10  |-  ( m  =  K  ->  ( R `  m )  =  ( R `  K ) )
2019fveq2d 5852 . . . . . . . . 9  |-  ( m  =  K  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  K )
) )
2120eqeq1d 2456 . . . . . . . 8  |-  ( m  =  K  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  K ) )  =  0 ) )
2221imbi2d 314 . . . . . . 7  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
23 algcvga.1 . . . . . . . . 9  |-  F : S
--> S
24 algcvga.2 . . . . . . . . 9  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
25 algcvga.4 . . . . . . . . 9  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
2623, 24, 2, 25, 1algcvg 14289 . . . . . . . 8  |-  ( A  e.  S  ->  ( C `  ( R `  N ) )  =  0 )
2726a1i 11 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( C `  ( R `
 N ) )  =  0 ) )
28 nn0ge0 10817 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  0  <_  N )
2928adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  0  <_  N )
30 nn0re 10800 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  N  e.  RR )
31 zre 10864 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  k  e.  RR )
32 0re 9585 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
33 letr 9667 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  k  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  k )  ->  0  <_  k
) )
3432, 33mp3an1 1309 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  k  e.  RR )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3530, 31, 34syl2an 475 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3629, 35mpand 673 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  0  <_  k )
)
37 elnn0z 10873 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
3837simplbi2 623 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  (
0  <_  k  ->  k  e.  NN0 ) )
3938adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( 0  <_  k  ->  k  e.  NN0 )
)
4036, 39syld 44 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
414, 40sylan 469 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
4241impr 617 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  ( k  e.  ZZ  /\  N  <_  k )
)  ->  k  e.  NN0 )
4342expcom 433 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  N  <_  k )  -> 
( A  e.  S  ->  k  e.  NN0 )
)
44433adant1 1012 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  k  e.  NN0 ) )
4544ancld 551 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( A  e.  S  /\  k  e.  NN0 ) ) )
46 nn0uz 11116 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
47 0zd 10872 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  0  e.  ZZ )
48 id 22 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  A  e.  S )
4923a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  F : S --> S )
5046, 24, 47, 48, 49algrf 14286 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  R : NN0 --> S )
5150ffvelrnda 6007 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
52 fveq2 5848 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  ( F `  z )  =  ( F `  ( R `  k ) ) )
5352fveq2d 5852 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  ( F `  z ) )  =  ( C `  ( F `  ( R `  k ) ) ) )
5453neeq1d 2731 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  =/=  0  <->  ( C `  ( F `  ( R `  k
) ) )  =/=  0 ) )
55 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  z )  =  ( C `  ( R `  k ) ) )
5653, 55breq12d 4452 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  <  ( C `  z )  <->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) )
5754, 56imbi12d 318 . . . . . . . . . . . . 13  |-  ( z  =  ( R `  k )  ->  (
( ( C `  ( F `  z ) )  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) )  <->  ( ( C `  ( F `  ( R `  k
) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) ) )
5857, 25vtoclga 3170 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( F `  ( R `  k ) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k
) ) )  < 
( C `  ( R `  k )
) ) )
5923, 2algcvgb 14291 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  <->  ( (
( C `  ( R `  k )
)  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) ) )
60 simpr 459 . . . . . . . . . . . . 13  |-  ( ( ( ( C `  ( R `  k ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )  ->  ( ( C `
 ( R `  k ) )  =  0  ->  ( C `  ( F `  ( R `  k )
) )  =  0 ) )
6159, 60syl6bi 228 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) )
6258, 61mpd 15 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
6351, 62syl 16 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
6446, 24, 47, 48, 49algrp1 14287 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
6564fveq2d 5852 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  ( C `
 ( F `  ( R `  k ) ) ) )
6665eqeq1d 2456 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  ( k  +  1 ) ) )  =  0  <->  ( C `  ( F `  ( R `  k
) ) )  =  0 ) )
6763, 66sylibrd 234 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
6845, 67syl6 33 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( ( C `  ( R `  k )
)  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
6968a2d 26 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  (
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 )  ->  ( A  e.  S  ->  ( C `  ( R `  (
k  +  1 ) ) )  =  0 ) ) )
7010, 14, 18, 22, 27, 69uzind 10950 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) )
71703expib 1197 . . . . 5  |-  ( N  e.  ZZ  ->  (
( K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
726, 71sylbid 215 . . . 4  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) ) )
735, 72syl 16 . . 3  |-  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( C `
 ( R `  K ) )  =  0 ) ) )
7473com3r 79 . 2  |-  ( A  e.  S  ->  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) ) )
754, 74mpd 15 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   {csn 4016   class class class wbr 4439    X. cxp 4986    o. ccom 4992   -->wf 5566   ` cfv 5570  (class class class)co 6270   1stc1st 6771   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082    seqcseq 12089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-seq 12090
This theorem is referenced by:  algfx  14293  eucalgcvga  14299
  Copyright terms: Public domain W3C validator