MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsublem Structured version   Unicode version

Theorem alexsublem 19619
Description: Lemma for alexsub 19620. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
alexsub.1  |-  ( ph  ->  X  e. UFL )
alexsub.2  |-  ( ph  ->  X  =  U. B
)
alexsub.3  |-  ( ph  ->  J  =  ( topGen `  ( fi `  B
) ) )
alexsub.4  |-  ( (
ph  /\  ( x  C_  B  /\  X  = 
U. x ) )  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )
alexsub.5  |-  ( ph  ->  F  e.  ( UFil `  X ) )
alexsub.6  |-  ( ph  ->  ( J  fLim  F
)  =  (/) )
Assertion
Ref Expression
alexsublem  |-  -.  ph
Distinct variable groups:    x, y, B    x, J, y    ph, x, y    x, X, y    x, F, y

Proof of Theorem alexsublem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eldif 3341 . . . . . . . . . 10  |-  ( x  e.  ( X  \  U. ( B  \  F
) )  <->  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )
2 alexsub.3 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  =  ( topGen `  ( fi `  B
) ) )
32eleq2d 2510 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( y  e.  J  <->  y  e.  ( topGen `  ( fi `  B ) ) ) )
43anbi1d 704 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( y  e.  J  /\  x  e.  y )  <->  ( y  e.  ( topGen `  ( fi `  B ) )  /\  x  e.  y )
) )
54biimpa 484 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
( y  e.  (
topGen `  ( fi `  B ) )  /\  x  e.  y )
)
65adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
( y  e.  (
topGen `  ( fi `  B ) )  /\  x  e.  y )
)
7 tg2 18573 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ( topGen `  ( fi `  B
) )  /\  x  e.  y )  ->  E. z  e.  ( fi `  B
) ( x  e.  z  /\  z  C_  y ) )
86, 7syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  E. z  e.  ( fi `  B ) ( x  e.  z  /\  z  C_  y ) )
9 alexsub.5 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ( UFil `  X ) )
10 ufilfil 19480 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
119, 10syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( Fil `  X ) )
1211ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  F  e.  ( Fil `  X ) )
13 alexsub.2 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  X  =  U. B
)
149elfvexd 5721 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  X  e.  _V )
1513, 14eqeltrrd 2518 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  U. B  e.  _V )
16 uniexb 6389 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  _V  <->  U. B  e. 
_V )
1715, 16sylibr 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  B  e.  _V )
18 elfi2 7667 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  _V  ->  (
z  e.  ( fi
`  B )  <->  E. y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) z  = 
|^| y ) )
1917, 18syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( z  e.  ( fi `  B )  <->  E. y  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) z  =  |^| y ) )
2019adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  ( z  e.  ( fi `  B
)  <->  E. y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) z  =  |^| y ) )
2111ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  F  e.  ( Fil `  X ) )
22 simplrr 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  ->  -.  x  e.  U. ( B  \  F ) )
23 intss1 4146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  y  ->  |^| y  C_  z )
2423adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )  ->  |^| y  C_  z
)
25 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )  ->  x  e.  |^| y
)
2624, 25sseldd 3360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )  ->  x  e.  z )
2726ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  x  e.  z )
28 eldifsn 4003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  <->  ( y  e.  ( ~P B  i^i  Fin )  /\  y  =/=  (/) ) )
2928simplbi 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  -> 
y  e.  ( ~P B  i^i  Fin )
)
3029ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  e.  ( ~P B  i^i  Fin ) )
31 elfpw 7616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( y  e.  ( ~P B  i^i  Fin )  <->  ( y  C_  B  /\  y  e. 
Fin ) )
3231simplbi 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( y  e.  ( ~P B  i^i  Fin )  ->  y  C_  B )
3330, 32syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  C_  B )
3433sselda 3359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  /\  z  e.  y )  ->  z  e.  B )
3534anasss 647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  -> 
z  e.  B )
3635anim1i 568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  (
z  e.  B  /\  -.  z  e.  F
) )
37 eldif 3341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( z  e.  ( B  \  F )  <->  ( z  e.  B  /\  -.  z  e.  F ) )
3836, 37sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  z  e.  ( B  \  F
) )
39 elunii 4099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  z  /\  z  e.  ( B  \  F ) )  ->  x  e.  U. ( B  \  F ) )
4027, 38, 39syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  x  e.  U. ( B  \  F ) )
4140ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  -> 
( -.  z  e.  F  ->  x  e.  U. ( B  \  F
) ) )
4222, 41mt3d 125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  -> 
z  e.  F )
4342expr 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  ( z  e.  y  ->  z  e.  F ) )
4443ssrdv 3365 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  C_  F )
4528simprbi 464 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  -> 
y  =/=  (/) )
4645ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  =/=  (/) )
4731simprbi 464 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( ~P B  i^i  Fin )  ->  y  e.  Fin )
4830, 47syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  e.  Fin )
49 elfir 7668 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  ( Fil `  X )  /\  (
y  C_  F  /\  y  =/=  (/)  /\  y  e. 
Fin ) )  ->  |^| y  e.  ( fi `  F ) )
5021, 44, 46, 48, 49syl13anc 1220 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  |^| y  e.  ( fi `  F
) )
51 filfi 19435 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F  e.  ( Fil `  X
)  ->  ( fi `  F )  =  F )
5221, 51syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  ( fi `  F )  =  F )
5350, 52eleqtrd 2519 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  |^| y  e.  F )
5453expr 615 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) )  -> 
( x  e.  |^| y  ->  |^| y  e.  F
) )
55 eleq2 2504 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  |^| y  -> 
( x  e.  z  <-> 
x  e.  |^| y
) )
56 eleq1 2503 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  |^| y  -> 
( z  e.  F  <->  |^| y  e.  F ) )
5755, 56imbi12d 320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  |^| y  -> 
( ( x  e.  z  ->  z  e.  F )  <->  ( x  e.  |^| y  ->  |^| y  e.  F ) ) )
5854, 57syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) )  -> 
( z  =  |^| y  ->  ( x  e.  z  ->  z  e.  F ) ) )
5958rexlimdva 2844 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  ( E. y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) z  = 
|^| y  ->  (
x  e.  z  -> 
z  e.  F ) ) )
6020, 59sylbid 215 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  ( z  e.  ( fi `  B
)  ->  ( x  e.  z  ->  z  e.  F ) ) )
6160imp32 433 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( z  e.  ( fi `  B )  /\  x  e.  z ) )  -> 
z  e.  F )
6261adantrrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( z  e.  ( fi `  B )  /\  (
x  e.  z  /\  z  C_  y ) ) )  ->  z  e.  F )
6362adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  z  e.  F
)
64 elssuni 4124 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  J  ->  y  C_ 
U. J )
6564ad2antrl 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  C_  U. J )
66 fibas 18585 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( fi
`  B )  e.  TopBases
67 tgtopon 18579 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( fi `  B )  e.  TopBases  ->  ( topGen `  ( fi `  B ) )  e.  (TopOn `  U. ( fi `  B ) ) )
6866, 67ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( topGen `  ( fi `  B
) )  e.  (TopOn `  U. ( fi `  B ) )
692, 68syl6eqel 2531 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  (TopOn `  U. ( fi `  B
) ) )
70 fiuni 7681 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( B  e.  _V  ->  U. B  =  U. ( fi `  B ) )
7117, 70syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  U. B  =  U. ( fi `  B ) )
7213, 71eqtrd 2475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  X  =  U. ( fi `  B ) )
7372fveq2d 5698 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  (TopOn `  X )  =  (TopOn `  U. ( fi
`  B ) ) )
7469, 73eleqtrrd 2520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  (TopOn `  X ) )
75 toponuni 18535 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
7674, 75syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  X  =  U. J
)
7776ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  X  =  U. J )
7865, 77sseqtr4d 3396 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  C_  X )
7978adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  y  C_  X
)
80 simprrr 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  z  C_  y
)
81 filss 19429 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ( Fil `  X )  /\  (
z  e.  F  /\  y  C_  X  /\  z  C_  y ) )  -> 
y  e.  F )
8212, 63, 79, 80, 81syl13anc 1220 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  y  e.  F
)
838, 82rexlimddv 2848 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  e.  F )
8483expr 615 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  y  e.  J )  ->  (
x  e.  y  -> 
y  e.  F ) )
8584ralrimiva 2802 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) )
8685expr 615 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  x  e.  U. ( B  \  F )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) )
8786imdistanda 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) )  -> 
( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
881, 87syl5bi 217 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X  \  U. ( B  \  F ) )  ->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
89 flimopn 19551 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
9074, 11, 89syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( J  fLim  F )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  -> 
y  e.  F ) ) ) )
9188, 90sylibrd 234 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X  \  U. ( B  \  F ) )  ->  x  e.  ( J  fLim  F )
) )
9291ssrdv 3365 . . . . . . 7  |-  ( ph  ->  ( X  \  U. ( B  \  F ) )  C_  ( J  fLim  F ) )
93 alexsub.6 . . . . . . 7  |-  ( ph  ->  ( J  fLim  F
)  =  (/) )
94 sseq0 3672 . . . . . . 7  |-  ( ( ( X  \  U. ( B  \  F ) )  C_  ( J  fLim  F )  /\  ( J  fLim  F )  =  (/) )  ->  ( X 
\  U. ( B  \  F ) )  =  (/) )
9592, 93, 94syl2anc 661 . . . . . 6  |-  ( ph  ->  ( X  \  U. ( B  \  F ) )  =  (/) )
96 ssdif0 3740 . . . . . 6  |-  ( X 
C_  U. ( B  \  F )  <->  ( X  \ 
U. ( B  \  F ) )  =  (/) )
9795, 96sylibr 212 . . . . 5  |-  ( ph  ->  X  C_  U. ( B  \  F ) )
98 difss 3486 . . . . . . 7  |-  ( B 
\  F )  C_  B
9998unissi 4117 . . . . . 6  |-  U. ( B  \  F )  C_  U. B
10099, 13syl5sseqr 3408 . . . . 5  |-  ( ph  ->  U. ( B  \  F )  C_  X
)
10197, 100eqssd 3376 . . . 4  |-  ( ph  ->  X  =  U. ( B  \  F ) )
102101, 98jctil 537 . . 3  |-  ( ph  ->  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )
103 difexg 4443 . . . . . 6  |-  ( B  e.  _V  ->  ( B  \  F )  e. 
_V )
10417, 103syl 16 . . . . 5  |-  ( ph  ->  ( B  \  F
)  e.  _V )
105104adantr 465 . . . 4  |-  ( (
ph  /\  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  ( B  \  F )  e. 
_V )
106 sseq1 3380 . . . . . . . 8  |-  ( x  =  ( B  \  F )  ->  (
x  C_  B  <->  ( B  \  F )  C_  B
) )
107 unieq 4102 . . . . . . . . 9  |-  ( x  =  ( B  \  F )  ->  U. x  =  U. ( B  \  F ) )
108107eqeq2d 2454 . . . . . . . 8  |-  ( x  =  ( B  \  F )  ->  ( X  =  U. x  <->  X  =  U. ( B 
\  F ) ) )
109106, 108anbi12d 710 . . . . . . 7  |-  ( x  =  ( B  \  F )  ->  (
( x  C_  B  /\  X  =  U. x )  <->  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) ) )
110109anbi2d 703 . . . . . 6  |-  ( x  =  ( B  \  F )  ->  (
( ph  /\  (
x  C_  B  /\  X  =  U. x
) )  <->  ( ph  /\  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) ) ) )
111 pweq 3866 . . . . . . . 8  |-  ( x  =  ( B  \  F )  ->  ~P x  =  ~P ( B  \  F ) )
112111ineq1d 3554 . . . . . . 7  |-  ( x  =  ( B  \  F )  ->  ( ~P x  i^i  Fin )  =  ( ~P ( B  \  F )  i^i 
Fin ) )
113112rexeqdv 2927 . . . . . 6  |-  ( x  =  ( B  \  F )  ->  ( E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y  <->  E. y  e.  ( ~P ( B  \  F
)  i^i  Fin ) X  =  U. y
) )
114110, 113imbi12d 320 . . . . 5  |-  ( x  =  ( B  \  F )  ->  (
( ( ph  /\  ( x  C_  B  /\  X  =  U. x
) )  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y )  <->  ( ( ph  /\  ( ( B 
\  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y ) ) )
115 alexsub.4 . . . . 5  |-  ( (
ph  /\  ( x  C_  B  /\  X  = 
U. x ) )  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )
116114, 115vtoclg 3033 . . . 4  |-  ( ( B  \  F )  e.  _V  ->  (
( ph  /\  (
( B  \  F
)  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y ) )
117105, 116mpcom 36 . . 3  |-  ( (
ph  /\  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y )
118102, 117mpdan 668 . 2  |-  ( ph  ->  E. y  e.  ( ~P ( B  \  F )  i^i  Fin ) X  =  U. y )
119 unieq 4102 . . . . . . 7  |-  ( y  =  (/)  ->  U. y  =  U. (/) )
120 uni0 4121 . . . . . . 7  |-  U. (/)  =  (/)
121119, 120syl6eq 2491 . . . . . 6  |-  ( y  =  (/)  ->  U. y  =  (/) )
122121neeq2d 2625 . . . . 5  |-  ( y  =  (/)  ->  ( X  =/=  U. y  <->  X  =/=  (/) ) )
123 difssd 3487 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  ( X  \  z )  C_  X )
124123ralrimivw 2803 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  A. z  e.  y  ( X  \  z )  C_  X
)
125 riinn0 4248 . . . . . . . . . 10  |-  ( ( A. z  e.  y  ( X  \  z
)  C_  X  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =  |^|_ z  e.  y  ( X  \  z ) )
126124, 125sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =  |^|_ z  e.  y  ( X  \  z ) )
12714ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  X  e.  _V )
128 difexg 4443 . . . . . . . . . . . . 13  |-  ( X  e.  _V  ->  ( X  \  z )  e. 
_V )
129127, 128syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  \  z )  e. 
_V )
130129ralrimivw 2803 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  A. z  e.  y  ( X  \  z )  e.  _V )
131 dfiin2g 4206 . . . . . . . . . . 11  |-  ( A. z  e.  y  ( X  \  z )  e. 
_V  ->  |^|_ z  e.  y  ( X  \  z
)  =  |^| { x  |  E. z  e.  y  x  =  ( X 
\  z ) } )
132130, 131syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  |^|_ z  e.  y  ( X  \  z )  =  |^| { x  |  E. z  e.  y  x  =  ( X  \  z
) } )
133 eqid 2443 . . . . . . . . . . . 12  |-  ( z  e.  y  |->  ( X 
\  z ) )  =  ( z  e.  y  |->  ( X  \ 
z ) )
134133rnmpt 5088 . . . . . . . . . . 11  |-  ran  (
z  e.  y  |->  ( X  \  z ) )  =  { x  |  E. z  e.  y  x  =  ( X 
\  z ) }
135134inteqi 4135 . . . . . . . . . 10  |-  |^| ran  ( z  e.  y 
|->  ( X  \  z
) )  =  |^| { x  |  E. z  e.  y  x  =  ( X  \  z
) }
136132, 135syl6eqr 2493 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  |^|_ z  e.  y  ( X  \  z )  =  |^| ran  ( z  e.  y 
|->  ( X  \  z
) ) )
137126, 136eqtrd 2475 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =  |^| ran  ( z  e.  y 
|->  ( X  \  z
) ) )
13811ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  F  e.  ( Fil `  X
) )
139 elfpw 7616 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( ~P ( B  \  F )  i^i 
Fin )  <->  ( y  C_  ( B  \  F
)  /\  y  e.  Fin ) )
140139simplbi 460 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ~P ( B  \  F )  i^i 
Fin )  ->  y  C_  ( B  \  F
) )
141140ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  C_  ( B  \  F
) )
142141sselda 3359 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  e.  ( B 
\  F ) )
143142eldifbd 3344 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  -.  z  e.  F
)
1449ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  F  e.  ( UFil `  X ) )
145141difss2d 3489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  C_  B )
146145sselda 3359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  e.  B )
147 elssuni 4124 . . . . . . . . . . . . . . 15  |-  ( z  e.  B  ->  z  C_ 
U. B )
148146, 147syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  C_  U. B )
14913ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  X  =  U. B
)
150148, 149sseqtr4d 3396 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  C_  X )
151 ufilb 19482 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( UFil `  X )  /\  z  C_  X )  ->  ( -.  z  e.  F  <->  ( X  \  z )  e.  F ) )
152144, 150, 151syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  ( -.  z  e.  F  <->  ( X  \ 
z )  e.  F
) )
153143, 152mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  ( X  \  z
)  e.  F )
154153, 133fmptd 5870 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  (
z  e.  y  |->  ( X  \  z ) ) : y --> F )
155 frn 5568 . . . . . . . . . 10  |-  ( ( z  e.  y  |->  ( X  \  z ) ) : y --> F  ->  ran  ( z  e.  y  |->  ( X 
\  z ) ) 
C_  F )
156154, 155syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  C_  F
)
157 fdm 5566 . . . . . . . . . . . 12  |-  ( ( z  e.  y  |->  ( X  \  z ) ) : y --> F  ->  dom  ( z  e.  y  |->  ( X 
\  z ) )  =  y )
158154, 157syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  dom  ( z  e.  y 
|->  ( X  \  z
) )  =  y )
159 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  =/=  (/) )
160158, 159eqnetrd 2629 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  dom  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/) )
161 dm0rn0 5059 . . . . . . . . . . 11  |-  ( dom  ( z  e.  y 
|->  ( X  \  z
) )  =  (/)  <->  ran  ( z  e.  y 
|->  ( X  \  z
) )  =  (/) )
162161necon3bii 2643 . . . . . . . . . 10  |-  ( dom  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/)  <->  ran  ( z  e.  y  |->  ( X 
\  z ) )  =/=  (/) )
163160, 162sylib 196 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/) )
164139simprbi 464 . . . . . . . . . . 11  |-  ( y  e.  ( ~P ( B  \  F )  i^i 
Fin )  ->  y  e.  Fin )
165164ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  e.  Fin )
166 abrexfi 7614 . . . . . . . . . . 11  |-  ( y  e.  Fin  ->  { x  |  E. z  e.  y  x  =  ( X 
\  z ) }  e.  Fin )
167134, 166syl5eqel 2527 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  e.  Fin )
168165, 167syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  e.  Fin )
169 filintn0 19437 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  ( ran  ( z  e.  y 
|->  ( X  \  z
) )  C_  F  /\  ran  ( z  e.  y  |->  ( X  \ 
z ) )  =/=  (/)  /\  ran  ( z  e.  y  |->  ( X 
\  z ) )  e.  Fin ) )  ->  |^| ran  ( z  e.  y  |->  ( X 
\  z ) )  =/=  (/) )
170138, 156, 163, 168, 169syl13anc 1220 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  |^| ran  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/) )
171137, 170eqnetrd 2629 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =/=  (/) )
172 disj3 3726 . . . . . . . 8  |-  ( ( X  i^i  |^|_ z  e.  y  ( X  \  z ) )  =  (/) 
<->  X  =  ( X 
\  |^|_ z  e.  y  ( X  \  z
) ) )
173172necon3bii 2643 . . . . . . 7  |-  ( ( X  i^i  |^|_ z  e.  y  ( X  \  z ) )  =/=  (/) 
<->  X  =/=  ( X 
\  |^|_ z  e.  y  ( X  \  z
) ) )
174171, 173sylib 196 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  X  =/=  ( X  \  |^|_ z  e.  y  ( X  \  z ) ) )
175 iundif2 4240 . . . . . . 7  |-  U_ z  e.  y  ( X  \  ( X  \  z
) )  =  ( X  \  |^|_ z  e.  y  ( X  \  z ) )
176 dfss4 3587 . . . . . . . . . 10  |-  ( z 
C_  X  <->  ( X  \  ( X  \  z
) )  =  z )
177150, 176sylib 196 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  ( X  \  ( X  \  z ) )  =  z )
178177iuneq2dv 4195 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  U_ z  e.  y  ( X  \  ( X  \  z
) )  =  U_ z  e.  y  z
)
179 uniiun 4226 . . . . . . . 8  |-  U. y  =  U_ z  e.  y  z
180178, 179syl6eqr 2493 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  U_ z  e.  y  ( X  \  ( X  \  z
) )  =  U. y )
181175, 180syl5eqr 2489 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  \  |^|_ z  e.  y  ( X  \  z
) )  =  U. y )
182174, 181neeqtrd 2633 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  X  =/=  U. y )
18311adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  F  e.  ( Fil `  X
) )
184 filtop 19431 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
185 fileln0 19426 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  X  e.  F )  ->  X  =/=  (/) )
186184, 185mpdan 668 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  X  =/=  (/) )
187183, 186syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  X  =/=  (/) )
188122, 182, 187pm2.61ne 2689 . . . 4  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  X  =/=  U. y )
189188neneqd 2627 . . 3  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  -.  X  =  U. y
)
190189nrexdv 2822 . 2  |-  ( ph  ->  -.  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y )
191118, 190pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429    =/= wne 2609   A.wral 2718   E.wrex 2719   _Vcvv 2975    \ cdif 3328    i^i cin 3330    C_ wss 3331   (/)c0 3640   ~Pcpw 3863   {csn 3880   U.cuni 4094   |^|cint 4131   U_ciun 4174   |^|_ciin 4175    e. cmpt 4353   dom cdm 4843   ran crn 4844   -->wf 5417   ` cfv 5421  (class class class)co 6094   Fincfn 7313   ficfi 7663   topGenctg 14379  TopOnctopon 18502   TopBasesctb 18505   Filcfil 19421   UFilcufil 19475  UFLcufl 19476    fLim cflim 19510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-en 7314  df-dom 7315  df-fin 7317  df-fi 7664  df-topgen 14385  df-fbas 17817  df-top 18506  df-bases 18508  df-topon 18509  df-ntr 18627  df-nei 18705  df-fil 19422  df-ufil 19477  df-flim 19515
This theorem is referenced by:  alexsub  19620
  Copyright terms: Public domain W3C validator