MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubb Structured version   Unicode version

Theorem alexsubb 20309
Description: Biconditional form of the Alexander Subbase Theorem alexsub 20308. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
alexsubb  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Distinct variable groups:    x, y, B    x, X, y

Proof of Theorem alexsubb
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . 5  |-  U. ( topGen `
 ( fi `  B ) )  = 
U. ( topGen `  ( fi `  B ) )
21iscmp 19682 . . . 4  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp 
<->  ( ( topGen `  ( fi `  B ) )  e.  Top  /\  A. x  e.  ~P  ( topGen `
 ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) ) )
32simprbi 464 . . 3  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp  ->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) )
4 simpr 461 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. B )
5 elex 3122 . . . . . . . . . . . 12  |-  ( X  e. UFL  ->  X  e.  _V )
65adantr 465 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  e.  _V )
74, 6eqeltrrd 2556 . . . . . . . . . 10  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  e.  _V )
8 uniexb 6594 . . . . . . . . . 10  |-  ( B  e.  _V  <->  U. B  e. 
_V )
97, 8sylibr 212 . . . . . . . . 9  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  e.  _V )
10 fiuni 7888 . . . . . . . . 9  |-  ( B  e.  _V  ->  U. B  =  U. ( fi `  B ) )
119, 10syl 16 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  =  U. ( fi `  B ) )
12 fibas 19273 . . . . . . . . 9  |-  ( fi
`  B )  e.  TopBases
13 unitg 19263 . . . . . . . . 9  |-  ( ( fi `  B )  e.  TopBases  ->  U. ( topGen `  ( fi `  B ) )  =  U. ( fi
`  B ) )
1412, 13mp1i 12 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. ( topGen `  ( fi `  B ) )  = 
U. ( fi `  B ) )
1511, 4, 143eqtr4d 2518 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. ( topGen `
 ( fi `  B ) ) )
1615eqeq1d 2469 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. x 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. x ) )
1715eqeq1d 2469 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. y 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. y ) )
1817rexbidv 2973 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y  <->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) )
1916, 18imbi12d 320 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y )  <->  ( U. ( topGen `  ( fi `  B ) )  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) ) )
2019ralbidv 2903 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y ) ) )
21 ssfii 7879 . . . . . . . 8  |-  ( B  e.  _V  ->  B  C_  ( fi `  B
) )
229, 21syl 16 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( fi `  B ) )
23 bastg 19262 . . . . . . . 8  |-  ( ( fi `  B )  e.  TopBases  ->  ( fi `  B )  C_  ( topGen `
 ( fi `  B ) ) )
2412, 23ax-mp 5 . . . . . . 7  |-  ( fi
`  B )  C_  ( topGen `  ( fi `  B ) )
2522, 24syl6ss 3516 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( topGen `  ( fi `  B ) ) )
26 sspwb 4696 . . . . . 6  |-  ( B 
C_  ( topGen `  ( fi `  B ) )  <->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
2725, 26sylib 196 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
28 ssralv 3564 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 ( fi `  B ) )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
2927, 28syl 16 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
3020, 29sylbird 235 . . 3  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y )  ->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
313, 30syl5 32 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
32 simpll 753 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  e. UFL )
33 simplr 754 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  =  U. B )
34 eqidd 2468 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  =  ( topGen `  ( fi `  B ) ) )
35 selpw 4017 . . . . . . 7  |-  ( z  e.  ~P B  <->  z  C_  B )
36 unieq 4253 . . . . . . . . . . 11  |-  ( x  =  z  ->  U. x  =  U. z )
3736eqeq2d 2481 . . . . . . . . . 10  |-  ( x  =  z  ->  ( X  =  U. x  <->  X  =  U. z ) )
38 pweq 4013 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ~P x  =  ~P z
)
3938ineq1d 3699 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ~P x  i^i  Fin )  =  ( ~P z  i^i  Fin ) )
4039rexeqdv 3065 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y  <->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
) )
4137, 40imbi12d 320 . . . . . . . . 9  |-  ( x  =  z  ->  (
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i 
Fin ) X  = 
U. y ) ) )
4241rspccv 3211 . . . . . . . 8  |-  ( A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4342adantl 466 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4435, 43syl5bir 218 . . . . . 6  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  C_  B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4544imp32 433 . . . . 5  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
)
46 unieq 4253 . . . . . . 7  |-  ( y  =  w  ->  U. y  =  U. w )
4746eqeq2d 2481 . . . . . 6  |-  ( y  =  w  ->  ( X  =  U. y  <->  X  =  U. w ) )
4847cbvrexv 3089 . . . . 5  |-  ( E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y  <->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
4945, 48sylib 196 . . . 4  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
5032, 33, 34, 49alexsub 20308 . . 3  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  e. 
Comp )
5150ex 434 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
)  ->  ( topGen `  ( fi `  B
) )  e.  Comp ) )
5231, 51impbid 191 1  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   ` cfv 5588   Fincfn 7516   ficfi 7870   topGenctg 14693   Topctop 19189   TopBasesctb 19193   Compccmp 19680  UFLcufl 20164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fi 7871  df-topgen 14699  df-fbas 18215  df-fg 18216  df-top 19194  df-bases 19196  df-topon 19197  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-cmp 19681  df-fil 20110  df-ufil 20165  df-ufl 20166  df-flim 20203  df-fcls 20205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator