MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubb Structured version   Unicode version

Theorem alexsubb 19618
Description: Biconditional form of the Alexander Subbase Theorem alexsub 19617. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
alexsubb  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Distinct variable groups:    x, y, B    x, X, y

Proof of Theorem alexsubb
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . 5  |-  U. ( topGen `
 ( fi `  B ) )  = 
U. ( topGen `  ( fi `  B ) )
21iscmp 18991 . . . 4  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp 
<->  ( ( topGen `  ( fi `  B ) )  e.  Top  /\  A. x  e.  ~P  ( topGen `
 ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) ) )
32simprbi 464 . . 3  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp  ->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) )
4 simpr 461 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. B )
5 elex 2981 . . . . . . . . . . . 12  |-  ( X  e. UFL  ->  X  e.  _V )
65adantr 465 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  e.  _V )
74, 6eqeltrrd 2518 . . . . . . . . . 10  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  e.  _V )
8 uniexb 6386 . . . . . . . . . 10  |-  ( B  e.  _V  <->  U. B  e. 
_V )
97, 8sylibr 212 . . . . . . . . 9  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  e.  _V )
10 fiuni 7678 . . . . . . . . 9  |-  ( B  e.  _V  ->  U. B  =  U. ( fi `  B ) )
119, 10syl 16 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  =  U. ( fi `  B ) )
12 fibas 18582 . . . . . . . . 9  |-  ( fi
`  B )  e.  TopBases
13 unitg 18572 . . . . . . . . 9  |-  ( ( fi `  B )  e.  TopBases  ->  U. ( topGen `  ( fi `  B ) )  =  U. ( fi
`  B ) )
1412, 13mp1i 12 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. ( topGen `  ( fi `  B ) )  = 
U. ( fi `  B ) )
1511, 4, 143eqtr4d 2485 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. ( topGen `
 ( fi `  B ) ) )
1615eqeq1d 2451 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. x 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. x ) )
1715eqeq1d 2451 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. y 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. y ) )
1817rexbidv 2736 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y  <->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) )
1916, 18imbi12d 320 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y )  <->  ( U. ( topGen `  ( fi `  B ) )  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) ) )
2019ralbidv 2735 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y ) ) )
21 ssfii 7669 . . . . . . . 8  |-  ( B  e.  _V  ->  B  C_  ( fi `  B
) )
229, 21syl 16 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( fi `  B ) )
23 bastg 18571 . . . . . . . 8  |-  ( ( fi `  B )  e.  TopBases  ->  ( fi `  B )  C_  ( topGen `
 ( fi `  B ) ) )
2412, 23ax-mp 5 . . . . . . 7  |-  ( fi
`  B )  C_  ( topGen `  ( fi `  B ) )
2522, 24syl6ss 3368 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( topGen `  ( fi `  B ) ) )
26 sspwb 4541 . . . . . 6  |-  ( B 
C_  ( topGen `  ( fi `  B ) )  <->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
2725, 26sylib 196 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
28 ssralv 3416 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 ( fi `  B ) )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
2927, 28syl 16 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
3020, 29sylbird 235 . . 3  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y )  ->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
313, 30syl5 32 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
32 simpll 753 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  e. UFL )
33 simplr 754 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  =  U. B )
34 eqidd 2444 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  =  ( topGen `  ( fi `  B ) ) )
35 selpw 3867 . . . . . . 7  |-  ( z  e.  ~P B  <->  z  C_  B )
36 unieq 4099 . . . . . . . . . . 11  |-  ( x  =  z  ->  U. x  =  U. z )
3736eqeq2d 2454 . . . . . . . . . 10  |-  ( x  =  z  ->  ( X  =  U. x  <->  X  =  U. z ) )
38 pweq 3863 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ~P x  =  ~P z
)
3938ineq1d 3551 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ~P x  i^i  Fin )  =  ( ~P z  i^i  Fin ) )
4039rexeqdv 2924 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y  <->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
) )
4137, 40imbi12d 320 . . . . . . . . 9  |-  ( x  =  z  ->  (
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i 
Fin ) X  = 
U. y ) ) )
4241rspccv 3070 . . . . . . . 8  |-  ( A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4342adantl 466 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4435, 43syl5bir 218 . . . . . 6  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  C_  B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4544imp32 433 . . . . 5  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
)
46 unieq 4099 . . . . . . 7  |-  ( y  =  w  ->  U. y  =  U. w )
4746eqeq2d 2454 . . . . . 6  |-  ( y  =  w  ->  ( X  =  U. y  <->  X  =  U. w ) )
4847cbvrexv 2948 . . . . 5  |-  ( E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y  <->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
4945, 48sylib 196 . . . 4  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
5032, 33, 34, 49alexsub 19617 . . 3  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  e. 
Comp )
5150ex 434 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
)  ->  ( topGen `  ( fi `  B
) )  e.  Comp ) )
5231, 51impbid 191 1  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716   _Vcvv 2972    i^i cin 3327    C_ wss 3328   ~Pcpw 3860   U.cuni 4091   ` cfv 5418   Fincfn 7310   ficfi 7660   topGenctg 14376   Topctop 18498   TopBasesctb 18502   Compccmp 18989  UFLcufl 19473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fi 7661  df-topgen 14382  df-fbas 17814  df-fg 17815  df-top 18503  df-bases 18505  df-topon 18506  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-cmp 18990  df-fil 19419  df-ufil 19474  df-ufl 19475  df-flim 19512  df-fcls 19514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator