MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALTlem1 Structured version   Unicode version

Theorem alexsubALTlem1 19641
Description: Lemma for alexsubALT 19645. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.)
Hypothesis
Ref Expression
alexsubALT.1  |-  X  = 
U. J
Assertion
Ref Expression
alexsubALTlem1  |-  ( J  e.  Comp  ->  E. x
( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
Distinct variable groups:    c, d, x, J    X, c, d, x

Proof of Theorem alexsubALTlem1
StepHypRef Expression
1 cmptop 19020 . . 3  |-  ( J  e.  Comp  ->  J  e. 
Top )
2 fitop 18535 . . . . 5  |-  ( J  e.  Top  ->  ( fi `  J )  =  J )
32fveq2d 5716 . . . 4  |-  ( J  e.  Top  ->  ( topGen `
 ( fi `  J ) )  =  ( topGen `  J )
)
4 tgtop 18600 . . . 4  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
53, 4eqtr2d 2476 . . 3  |-  ( J  e.  Top  ->  J  =  ( topGen `  ( fi `  J ) ) )
61, 5syl 16 . 2  |-  ( J  e.  Comp  ->  J  =  ( topGen `  ( fi `  J ) ) )
7 selpw 3888 . . . 4  |-  ( c  e.  ~P J  <->  c  C_  J )
8 alexsubALT.1 . . . . . 6  |-  X  = 
U. J
98cmpcov 19014 . . . . 5  |-  ( ( J  e.  Comp  /\  c  C_  J  /\  X  = 
U. c )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)
1093exp 1186 . . . 4  |-  ( J  e.  Comp  ->  ( c 
C_  J  ->  ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
117, 10syl5bi 217 . . 3  |-  ( J  e.  Comp  ->  ( c  e.  ~P J  -> 
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
1211ralrimiv 2819 . 2  |-  ( J  e.  Comp  ->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) )
13 fveq2 5712 . . . . . 6  |-  ( x  =  J  ->  ( fi `  x )  =  ( fi `  J
) )
1413fveq2d 5716 . . . . 5  |-  ( x  =  J  ->  ( topGen `
 ( fi `  x ) )  =  ( topGen `  ( fi `  J ) ) )
1514eqeq2d 2454 . . . 4  |-  ( x  =  J  ->  ( J  =  ( topGen `  ( fi `  x
) )  <->  J  =  ( topGen `  ( fi `  J ) ) ) )
16 pweq 3884 . . . . 5  |-  ( x  =  J  ->  ~P x  =  ~P J
)
1716raleqdv 2944 . . . 4  |-  ( x  =  J  ->  ( A. c  e.  ~P  x ( X  = 
U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d )  <->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) )
1815, 17anbi12d 710 . . 3  |-  ( x  =  J  ->  (
( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )  <->  ( J  =  ( topGen `  ( fi `  J ) )  /\  A. c  e. 
~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) ) )
1918spcegv 3079 . 2  |-  ( J  e.  Comp  ->  ( ( J  =  ( topGen `  ( fi `  J
) )  /\  A. c  e.  ~P  J
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )  ->  E. x ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) ) )
206, 12, 19mp2and 679 1  |-  ( J  e.  Comp  ->  E. x
( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2736   E.wrex 2737    i^i cin 3348    C_ wss 3349   ~Pcpw 3881   U.cuni 4112   ` cfv 5439   Fincfn 7331   ficfi 7681   topGenctg 14397   Topctop 18520   Compccmp 19011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-fin 7335  df-fi 7682  df-topgen 14403  df-top 18525  df-cmp 19012
This theorem is referenced by:  alexsubALT  19645
  Copyright terms: Public domain W3C validator