MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleximiOLD Structured version   Unicode version

Theorem aleximiOLD 1664
Description: Obsolete proof of aleximi 1658 as of 4-Sep-2019. (Contributed by Wolf Lammen, 18-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
aleximiOLD.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
aleximiOLD  |-  ( A. x ph  ->  ( E. x ps  ->  E. x ch ) )

Proof of Theorem aleximiOLD
StepHypRef Expression
1 aleximiOLD.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21alimi 1638 . 2  |-  ( A. x ph  ->  A. x
( ps  ->  ch ) )
3 exim 1659 . 2  |-  ( A. x ( ps  ->  ch )  ->  ( E. x ps  ->  E. x ch ) )
42, 3syl 16 1  |-  ( A. x ph  ->  ( E. x ps  ->  E. x ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1396   E.wex 1617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636
This theorem depends on definitions:  df-bi 185  df-ex 1618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator