MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval3 Structured version   Unicode version

Theorem alephval3 8285
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.)
Assertion
Ref Expression
alephval3  |-  ( A  e.  On  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
Distinct variable group:    x, y, A

Proof of Theorem alephval3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 alephcard 8245 . . . 4  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
21a1i 11 . . 3  |-  ( A  e.  On  ->  ( card `  ( aleph `  A
) )  =  (
aleph `  A ) )
3 alephgeom 8257 . . . 4  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
43biimpi 194 . . 3  |-  ( A  e.  On  ->  om  C_  ( aleph `  A ) )
5 alephord2i 8252 . . . . 5  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
6 elirr 7818 . . . . . . 7  |-  -.  ( aleph `  y )  e.  ( aleph `  y )
7 eleq2 2504 . . . . . . 7  |-  ( (
aleph `  A )  =  ( aleph `  y )  ->  ( ( aleph `  y
)  e.  ( aleph `  A )  <->  ( aleph `  y )  e.  (
aleph `  y ) ) )
86, 7mtbiri 303 . . . . . 6  |-  ( (
aleph `  A )  =  ( aleph `  y )  ->  -.  ( aleph `  y
)  e.  ( aleph `  A ) )
98con2i 120 . . . . 5  |-  ( (
aleph `  y )  e.  ( aleph `  A )  ->  -.  ( aleph `  A
)  =  ( aleph `  y ) )
105, 9syl6 33 . . . 4  |-  ( A  e.  On  ->  (
y  e.  A  ->  -.  ( aleph `  A )  =  ( aleph `  y
) ) )
1110ralrimiv 2803 . . 3  |-  ( A  e.  On  ->  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y )
)
12 fvex 5706 . . . 4  |-  ( aleph `  A )  e.  _V
13 fveq2 5696 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( card `  x )  =  (
card `  ( aleph `  A
) ) )
14 id 22 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  x  =  ( aleph `  A )
)
1513, 14eqeq12d 2457 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( ( card `  x )  =  x  <->  ( card `  ( aleph `  A ) )  =  ( aleph `  A
) ) )
16 sseq2 3383 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( om  C_  x  <->  om  C_  ( aleph `  A ) ) )
17 eqeq1 2449 . . . . . . 7  |-  ( x  =  ( aleph `  A
)  ->  ( x  =  ( aleph `  y
)  <->  ( aleph `  A
)  =  ( aleph `  y ) ) )
1817notbid 294 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( -.  x  =  ( aleph `  y )  <->  -.  ( aleph `  A )  =  ( aleph `  y )
) )
1918ralbidv 2740 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( A. y  e.  A  -.  x  =  ( aleph `  y )  <->  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y )
) )
2015, 16, 193anbi123d 1289 . . . 4  |-  ( x  =  ( aleph `  A
)  ->  ( (
( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) )  <-> 
( ( card `  ( aleph `  A ) )  =  ( aleph `  A
)  /\  om  C_  ( aleph `  A )  /\  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y
) ) ) )
2112, 20elab 3111 . . 3  |-  ( (
aleph `  A )  e. 
{ x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( ( card `  ( aleph `  A
) )  =  (
aleph `  A )  /\  om  C_  ( aleph `  A )  /\  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y
) ) )
222, 4, 11, 21syl3anbrc 1172 . 2  |-  ( A  e.  On  ->  ( aleph `  A )  e. 
{ x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
23 cardalephex 8265 . . . . . . . . . 10  |-  ( om  C_  z  ->  ( (
card `  z )  =  z  <->  E. y  e.  On  z  =  ( aleph `  y ) ) )
2423biimpac 486 . . . . . . . . 9  |-  ( ( ( card `  z
)  =  z  /\  om  C_  z )  ->  E. y  e.  On  z  =  (
aleph `  y ) )
25 eleq1 2503 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( aleph `  y
)  ->  ( z  e.  ( aleph `  A )  <->  (
aleph `  y )  e.  ( aleph `  A )
) )
26 alephord2 8251 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( y  e.  A  <->  (
aleph `  y )  e.  ( aleph `  A )
) )
2726bicomd 201 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( ( aleph `  y
)  e.  ( aleph `  A )  <->  y  e.  A ) )
2825, 27sylan9bbr 700 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  ( z  e.  ( aleph `  A )  <->  y  e.  A ) )
2928biimpcd 224 . . . . . . . . . . . . . 14  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  y  e.  A
) )
30 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  z  =  (
aleph `  y ) )
3130a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  z  =  (
aleph `  y ) ) )
3229, 31jcad 533 . . . . . . . . . . . . 13  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  ( y  e.  A  /\  z  =  ( aleph `  y )
) ) )
3332exp4c 608 . . . . . . . . . . . 12  |-  ( z  e.  ( aleph `  A
)  ->  ( y  e.  On  ->  ( A  e.  On  ->  ( z  =  ( aleph `  y
)  ->  ( y  e.  A  /\  z  =  ( aleph `  y
) ) ) ) ) )
3433com3r 79 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  (
y  e.  On  ->  ( z  =  ( aleph `  y )  ->  (
y  e.  A  /\  z  =  ( aleph `  y ) ) ) ) ) )
3534imp4b 590 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( ( y  e.  On  /\  z  =  ( aleph `  y )
)  ->  ( y  e.  A  /\  z  =  ( aleph `  y
) ) ) )
3635reximdv2 2830 . . . . . . . . 9  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( E. y  e.  On  z  =  (
aleph `  y )  ->  E. y  e.  A  z  =  ( aleph `  y ) ) )
3724, 36syl5 32 . . . . . . . 8  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( ( ( card `  z )  =  z  /\  om  C_  z
)  ->  E. y  e.  A  z  =  ( aleph `  y )
) )
3837imp 429 . . . . . . 7  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  E. y  e.  A  z  =  ( aleph `  y ) )
39 dfrex2 2733 . . . . . . 7  |-  ( E. y  e.  A  z  =  ( aleph `  y
)  <->  -.  A. y  e.  A  -.  z  =  ( aleph `  y
) )
4038, 39sylib 196 . . . . . 6  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  -.  A. y  e.  A  -.  z  =  ( aleph `  y ) )
41 nan 580 . . . . . 6  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )  <->  ( (
( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  -.  A. y  e.  A  -.  z  =  ( aleph `  y ) ) )
4240, 41mpbir 209 . . . . 5  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
4342ex 434 . . . 4  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) ) )
44 vex 2980 . . . . . . 7  |-  z  e. 
_V
45 fveq2 5696 . . . . . . . . 9  |-  ( x  =  z  ->  ( card `  x )  =  ( card `  z
) )
46 id 22 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
4745, 46eqeq12d 2457 . . . . . . . 8  |-  ( x  =  z  ->  (
( card `  x )  =  x  <->  ( card `  z
)  =  z ) )
48 sseq2 3383 . . . . . . . 8  |-  ( x  =  z  ->  ( om  C_  x  <->  om  C_  z
) )
49 eqeq1 2449 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  ( aleph `  y )  <->  z  =  ( aleph `  y )
) )
5049notbid 294 . . . . . . . . 9  |-  ( x  =  z  ->  ( -.  x  =  ( aleph `  y )  <->  -.  z  =  ( aleph `  y
) ) )
5150ralbidv 2740 . . . . . . . 8  |-  ( x  =  z  ->  ( A. y  e.  A  -.  x  =  ( aleph `  y )  <->  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5247, 48, 513anbi123d 1289 . . . . . . 7  |-  ( x  =  z  ->  (
( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) )  <->  ( ( card `  z )  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y ) ) ) )
5344, 52elab 3111 . . . . . 6  |-  ( z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( ( card `  z )  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y ) ) )
54 df-3an 967 . . . . . 6  |-  ( ( ( card `  z
)  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) )  <->  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5553, 54bitri 249 . . . . 5  |-  ( z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5655notbii 296 . . . 4  |-  ( -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  <->  -.  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5743, 56syl6ibr 227 . . 3  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } ) )
5857ralrimiv 2803 . 2  |-  ( A  e.  On  ->  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )
59 cardon 8119 . . . . . 6  |-  ( card `  x )  e.  On
60 eleq1 2503 . . . . . 6  |-  ( (
card `  x )  =  x  ->  ( (
card `  x )  e.  On  <->  x  e.  On ) )
6159, 60mpbii 211 . . . . 5  |-  ( (
card `  x )  =  x  ->  x  e.  On )
62613ad2ant1 1009 . . . 4  |-  ( ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) )  ->  x  e.  On )
6362abssi 3432 . . 3  |-  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  C_  On
64 oneqmini 4775 . . 3  |-  ( { x  |  ( (
card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  C_  On  ->  ( ( ( aleph `  A
)  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } ) )
6563, 64ax-mp 5 . 2  |-  ( ( ( aleph `  A )  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )  ->  ( aleph `  A
)  =  |^| { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )
6622, 58, 65syl2anc 661 1  |-  ( A  e.  On  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {cab 2429   A.wral 2720   E.wrex 2721    C_ wss 3333   |^|cint 4133   Oncon0 4724   ` cfv 5423   omcom 6481   cardccrd 8110   alephcale 8111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-reg 7812  ax-inf2 7852
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-oi 7729  df-har 7778  df-card 8114  df-aleph 8115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator