MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval3 Structured version   Unicode version

Theorem alephval3 8508
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.)
Assertion
Ref Expression
alephval3  |-  ( A  e.  On  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
Distinct variable group:    x, y, A

Proof of Theorem alephval3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 alephcard 8468 . . . 4  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
21a1i 11 . . 3  |-  ( A  e.  On  ->  ( card `  ( aleph `  A
) )  =  (
aleph `  A ) )
3 alephgeom 8480 . . . 4  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
43biimpi 194 . . 3  |-  ( A  e.  On  ->  om  C_  ( aleph `  A ) )
5 alephord2i 8475 . . . . 5  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
6 elirr 8042 . . . . . . 7  |-  -.  ( aleph `  y )  e.  ( aleph `  y )
7 eleq2 2530 . . . . . . 7  |-  ( (
aleph `  A )  =  ( aleph `  y )  ->  ( ( aleph `  y
)  e.  ( aleph `  A )  <->  ( aleph `  y )  e.  (
aleph `  y ) ) )
86, 7mtbiri 303 . . . . . 6  |-  ( (
aleph `  A )  =  ( aleph `  y )  ->  -.  ( aleph `  y
)  e.  ( aleph `  A ) )
98con2i 120 . . . . 5  |-  ( (
aleph `  y )  e.  ( aleph `  A )  ->  -.  ( aleph `  A
)  =  ( aleph `  y ) )
105, 9syl6 33 . . . 4  |-  ( A  e.  On  ->  (
y  e.  A  ->  -.  ( aleph `  A )  =  ( aleph `  y
) ) )
1110ralrimiv 2869 . . 3  |-  ( A  e.  On  ->  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y )
)
12 fvex 5882 . . . 4  |-  ( aleph `  A )  e.  _V
13 fveq2 5872 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( card `  x )  =  (
card `  ( aleph `  A
) ) )
14 id 22 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  x  =  ( aleph `  A )
)
1513, 14eqeq12d 2479 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( ( card `  x )  =  x  <->  ( card `  ( aleph `  A ) )  =  ( aleph `  A
) ) )
16 sseq2 3521 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( om  C_  x  <->  om  C_  ( aleph `  A ) ) )
17 eqeq1 2461 . . . . . . 7  |-  ( x  =  ( aleph `  A
)  ->  ( x  =  ( aleph `  y
)  <->  ( aleph `  A
)  =  ( aleph `  y ) ) )
1817notbid 294 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( -.  x  =  ( aleph `  y )  <->  -.  ( aleph `  A )  =  ( aleph `  y )
) )
1918ralbidv 2896 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( A. y  e.  A  -.  x  =  ( aleph `  y )  <->  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y )
) )
2015, 16, 193anbi123d 1299 . . . 4  |-  ( x  =  ( aleph `  A
)  ->  ( (
( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) )  <-> 
( ( card `  ( aleph `  A ) )  =  ( aleph `  A
)  /\  om  C_  ( aleph `  A )  /\  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y
) ) ) )
2112, 20elab 3246 . . 3  |-  ( (
aleph `  A )  e. 
{ x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( ( card `  ( aleph `  A
) )  =  (
aleph `  A )  /\  om  C_  ( aleph `  A )  /\  A. y  e.  A  -.  ( aleph `  A )  =  ( aleph `  y
) ) )
222, 4, 11, 21syl3anbrc 1180 . 2  |-  ( A  e.  On  ->  ( aleph `  A )  e. 
{ x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
23 cardalephex 8488 . . . . . . . . . 10  |-  ( om  C_  z  ->  ( (
card `  z )  =  z  <->  E. y  e.  On  z  =  ( aleph `  y ) ) )
2423biimpac 486 . . . . . . . . 9  |-  ( ( ( card `  z
)  =  z  /\  om  C_  z )  ->  E. y  e.  On  z  =  (
aleph `  y ) )
25 eleq1 2529 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( aleph `  y
)  ->  ( z  e.  ( aleph `  A )  <->  (
aleph `  y )  e.  ( aleph `  A )
) )
26 alephord2 8474 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( y  e.  A  <->  (
aleph `  y )  e.  ( aleph `  A )
) )
2726bicomd 201 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( ( aleph `  y
)  e.  ( aleph `  A )  <->  y  e.  A ) )
2825, 27sylan9bbr 700 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  ( z  e.  ( aleph `  A )  <->  y  e.  A ) )
2928biimpcd 224 . . . . . . . . . . . . . 14  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  y  e.  A
) )
30 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  z  =  (
aleph `  y ) )
3130a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  z  =  (
aleph `  y ) ) )
3229, 31jcad 533 . . . . . . . . . . . . 13  |-  ( z  e.  ( aleph `  A
)  ->  ( (
( y  e.  On  /\  A  e.  On )  /\  z  =  (
aleph `  y ) )  ->  ( y  e.  A  /\  z  =  ( aleph `  y )
) ) )
3332exp4c 608 . . . . . . . . . . . 12  |-  ( z  e.  ( aleph `  A
)  ->  ( y  e.  On  ->  ( A  e.  On  ->  ( z  =  ( aleph `  y
)  ->  ( y  e.  A  /\  z  =  ( aleph `  y
) ) ) ) ) )
3433com3r 79 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  (
y  e.  On  ->  ( z  =  ( aleph `  y )  ->  (
y  e.  A  /\  z  =  ( aleph `  y ) ) ) ) ) )
3534imp4b 590 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( ( y  e.  On  /\  z  =  ( aleph `  y )
)  ->  ( y  e.  A  /\  z  =  ( aleph `  y
) ) ) )
3635reximdv2 2928 . . . . . . . . 9  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( E. y  e.  On  z  =  (
aleph `  y )  ->  E. y  e.  A  z  =  ( aleph `  y ) ) )
3724, 36syl5 32 . . . . . . . 8  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  -> 
( ( ( card `  z )  =  z  /\  om  C_  z
)  ->  E. y  e.  A  z  =  ( aleph `  y )
) )
3837imp 429 . . . . . . 7  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  E. y  e.  A  z  =  ( aleph `  y ) )
39 dfrex2 2908 . . . . . . 7  |-  ( E. y  e.  A  z  =  ( aleph `  y
)  <->  -.  A. y  e.  A  -.  z  =  ( aleph `  y
) )
4038, 39sylib 196 . . . . . 6  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  -.  A. y  e.  A  -.  z  =  ( aleph `  y ) )
41 nan 580 . . . . . 6  |-  ( ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )  <->  ( (
( A  e.  On  /\  z  e.  ( aleph `  A ) )  /\  ( ( card `  z
)  =  z  /\  om  C_  z ) )  ->  -.  A. y  e.  A  -.  z  =  ( aleph `  y ) ) )
4240, 41mpbir 209 . . . . 5  |-  ( ( A  e.  On  /\  z  e.  ( aleph `  A ) )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
4342ex 434 . . . 4  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  -.  ( ( ( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) ) )
44 vex 3112 . . . . . . 7  |-  z  e. 
_V
45 fveq2 5872 . . . . . . . . 9  |-  ( x  =  z  ->  ( card `  x )  =  ( card `  z
) )
46 id 22 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
4745, 46eqeq12d 2479 . . . . . . . 8  |-  ( x  =  z  ->  (
( card `  x )  =  x  <->  ( card `  z
)  =  z ) )
48 sseq2 3521 . . . . . . . 8  |-  ( x  =  z  ->  ( om  C_  x  <->  om  C_  z
) )
49 eqeq1 2461 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  ( aleph `  y )  <->  z  =  ( aleph `  y )
) )
5049notbid 294 . . . . . . . . 9  |-  ( x  =  z  ->  ( -.  x  =  ( aleph `  y )  <->  -.  z  =  ( aleph `  y
) ) )
5150ralbidv 2896 . . . . . . . 8  |-  ( x  =  z  ->  ( A. y  e.  A  -.  x  =  ( aleph `  y )  <->  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5247, 48, 513anbi123d 1299 . . . . . . 7  |-  ( x  =  z  ->  (
( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) )  <->  ( ( card `  z )  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y ) ) ) )
5344, 52elab 3246 . . . . . 6  |-  ( z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( ( card `  z )  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y ) ) )
54 df-3an 975 . . . . . 6  |-  ( ( ( card `  z
)  =  z  /\  om  C_  z  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) )  <->  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5553, 54bitri 249 . . . . 5  |-  ( z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  <->  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5655notbii 296 . . . 4  |-  ( -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  <->  -.  ( (
( card `  z )  =  z  /\  om  C_  z
)  /\  A. y  e.  A  -.  z  =  ( aleph `  y
) ) )
5743, 56syl6ibr 227 . . 3  |-  ( A  e.  On  ->  (
z  e.  ( aleph `  A )  ->  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } ) )
5857ralrimiv 2869 . 2  |-  ( A  e.  On  ->  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )
59 cardon 8342 . . . . . 6  |-  ( card `  x )  e.  On
60 eleq1 2529 . . . . . 6  |-  ( (
card `  x )  =  x  ->  ( (
card `  x )  e.  On  <->  x  e.  On ) )
6159, 60mpbii 211 . . . . 5  |-  ( (
card `  x )  =  x  ->  x  e.  On )
62613ad2ant1 1017 . . . 4  |-  ( ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) )  ->  x  e.  On )
6362abssi 3571 . . 3  |-  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  C_  On
64 oneqmini 4938 . . 3  |-  ( { x  |  ( (
card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  C_  On  ->  ( ( ( aleph `  A
)  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } ) )
6563, 64ax-mp 5 . 2  |-  ( ( ( aleph `  A )  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )  ->  ( aleph `  A
)  =  |^| { x  |  ( ( card `  x )  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y ) ) } )
6622, 58, 65syl2anc 661 1  |-  ( A  e.  On  ->  ( aleph `  A )  = 
|^| { x  |  ( ( card `  x
)  =  x  /\  om  C_  x  /\  A. y  e.  A  -.  x  =  ( aleph `  y
) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   {cab 2442   A.wral 2807   E.wrex 2808    C_ wss 3471   |^|cint 4288   Oncon0 4887   ` cfv 5594   omcom 6699   cardccrd 8333   alephcale 8334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-reg 8036  ax-inf2 8075
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-oi 7953  df-har 8002  df-card 8337  df-aleph 8338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator