MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc3 Structured version   Unicode version

Theorem alephsuc3 8744
Description: An alternate representation of a successor aleph. Compare alephsuc 8238 and alephsuc2 8250. Equality can be obtained by taking the  card of the right-hand side then using alephcard 8240 and carden 8715. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
alephsuc3  |-  ( A  e.  On  ->  ( aleph `  suc  A ) 
~~  { x  e.  On  |  x  ~~  ( aleph `  A ) } )
Distinct variable group:    x, A

Proof of Theorem alephsuc3
StepHypRef Expression
1 alephsuc2 8250 . . . . 5  |-  ( A  e.  On  ->  ( aleph `  suc  A )  =  { x  e.  On  |  x  ~<_  (
aleph `  A ) } )
2 alephcard 8240 . . . . . . 7  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
3 alephon 8239 . . . . . . . . 9  |-  ( aleph `  A )  e.  On
4 onenon 8119 . . . . . . . . 9  |-  ( (
aleph `  A )  e.  On  ->  ( aleph `  A )  e.  dom  card )
53, 4ax-mp 5 . . . . . . . 8  |-  ( aleph `  A )  e.  dom  card
6 cardval2 8161 . . . . . . . 8  |-  ( (
aleph `  A )  e. 
dom  card  ->  ( card `  ( aleph `  A )
)  =  { x  e.  On  |  x  ~<  (
aleph `  A ) } )
75, 6ax-mp 5 . . . . . . 7  |-  ( card `  ( aleph `  A )
)  =  { x  e.  On  |  x  ~<  (
aleph `  A ) }
82, 7eqtr3i 2465 . . . . . 6  |-  ( aleph `  A )  =  {
x  e.  On  |  x  ~<  ( aleph `  A
) }
98a1i 11 . . . . 5  |-  ( A  e.  On  ->  ( aleph `  A )  =  { x  e.  On  |  x  ~<  ( aleph `  A ) } )
101, 9difeq12d 3475 . . . 4  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
\  ( aleph `  A
) )  =  ( { x  e.  On  |  x  ~<_  ( aleph `  A ) }  \  { x  e.  On  |  x  ~<  ( aleph `  A ) } ) )
11 difrab 3624 . . . . 5  |-  ( { x  e.  On  |  x  ~<_  ( aleph `  A
) }  \  {
x  e.  On  |  x  ~<  ( aleph `  A
) } )  =  { x  e.  On  |  ( x  ~<_  (
aleph `  A )  /\  -.  x  ~<  ( aleph `  A ) ) }
12 bren2 7340 . . . . . . 7  |-  ( x 
~~  ( aleph `  A
)  <->  ( x  ~<_  (
aleph `  A )  /\  -.  x  ~<  ( aleph `  A ) ) )
1312a1i 11 . . . . . 6  |-  ( x  e.  On  ->  (
x  ~~  ( aleph `  A )  <->  ( x  ~<_  ( aleph `  A )  /\  -.  x  ~<  ( aleph `  A ) ) ) )
1413rabbiia 2961 . . . . 5  |-  { x  e.  On  |  x  ~~  ( aleph `  A ) }  =  { x  e.  On  |  ( x  ~<_  ( aleph `  A )  /\  -.  x  ~<  ( aleph `  A ) ) }
1511, 14eqtr4i 2466 . . . 4  |-  ( { x  e.  On  |  x  ~<_  ( aleph `  A
) }  \  {
x  e.  On  |  x  ~<  ( aleph `  A
) } )  =  { x  e.  On  |  x  ~~  ( aleph `  A ) }
1610, 15syl6req 2492 . . 3  |-  ( A  e.  On  ->  { x  e.  On  |  x  ~~  ( aleph `  A ) }  =  ( ( aleph `  suc  A ) 
\  ( aleph `  A
) ) )
17 alephon 8239 . . . . 5  |-  ( aleph ` 
suc  A )  e.  On
18 onenon 8119 . . . . 5  |-  ( (
aleph `  suc  A )  e.  On  ->  ( aleph `  suc  A )  e.  dom  card )
1917, 18mp1i 12 . . . 4  |-  ( A  e.  On  ->  ( aleph `  suc  A )  e.  dom  card )
20 sucelon 6428 . . . . . 6  |-  ( A  e.  On  <->  suc  A  e.  On )
21 alephgeom 8252 . . . . . 6  |-  ( suc 
A  e.  On  <->  om  C_  ( aleph `  suc  A ) )
2220, 21bitri 249 . . . . 5  |-  ( A  e.  On  <->  om  C_  ( aleph `  suc  A ) )
23 fvex 5701 . . . . . 6  |-  ( aleph ` 
suc  A )  e. 
_V
24 ssdomg 7355 . . . . . 6  |-  ( (
aleph `  suc  A )  e.  _V  ->  ( om  C_  ( aleph `  suc  A )  ->  om  ~<_  ( aleph ` 
suc  A ) ) )
2523, 24ax-mp 5 . . . . 5  |-  ( om  C_  ( aleph `  suc  A )  ->  om  ~<_  ( aleph ` 
suc  A ) )
2622, 25sylbi 195 . . . 4  |-  ( A  e.  On  ->  om  ~<_  ( aleph ` 
suc  A ) )
27 alephordilem1 8243 . . . 4  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( aleph `  suc  A ) )
28 infdif 8378 . . . 4  |-  ( ( ( aleph `  suc  A )  e.  dom  card  /\  om  ~<_  ( aleph `  suc  A )  /\  ( aleph `  A
)  ~<  ( aleph `  suc  A ) )  ->  (
( aleph `  suc  A ) 
\  ( aleph `  A
) )  ~~  ( aleph `  suc  A ) )
2919, 26, 27, 28syl3anc 1218 . . 3  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
\  ( aleph `  A
) )  ~~  ( aleph `  suc  A ) )
3016, 29eqbrtrd 4312 . 2  |-  ( A  e.  On  ->  { x  e.  On  |  x  ~~  ( aleph `  A ) }  ~~  ( aleph `  suc  A ) )
3130ensymd 7360 1  |-  ( A  e.  On  ->  ( aleph `  suc  A ) 
~~  { x  e.  On  |  x  ~~  ( aleph `  A ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2719   _Vcvv 2972    \ cdif 3325    C_ wss 3328   class class class wbr 4292   Oncon0 4719   suc csuc 4721   dom cdm 4840   ` cfv 5418   omcom 6476    ~~ cen 7307    ~<_ cdom 7308    ~< csdm 7309   cardccrd 8105   alephcale 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-oi 7724  df-har 7773  df-card 8109  df-aleph 8110  df-cda 8337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator